
VWS[ANIAPER SCIENT•

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

API DEVELOPMENT

FOR PERSISTENT DATA SESSIONS SUPPORT

by

Chayutra Pailom

March 2005

Thesis Advisor: Su Wen

Thesis Co-Advisor: Arijit Das

Approved for public release; distribution is unlimited

THIS PAGE INTENTIONALLY LEFT BLANK

REPRT OCUENATIN PGEForm Approved OMB No. 0704-
0188

Public reporting burden for this collection of information is estimated to average 1 hour per
response, including the time for reviewing instruction, searching existing data sources, gathering
and maintaining the data needed, and completing and reviewing the collection of information. Send
comients regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington headquarters Services, Directorate
for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188)
Washington DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

March 2005 Master's Thesis

4. TITLE AND SUBTITLE: API Development for Persistent 5. FUNDING NUMBERS
Data Sessions Support

6. AUTHOR(S) Chayutra Pailom

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Naval Postgraduate School REPORT NUMBER
Monterey, CA 93943-5000

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
N/A AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not
reflect the official policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT - 12b. DISTRIBUTION CODE
Approved for public release; distribution is unlimited

13. ABSTRACT (maximum 200 words)
This thesis studies and discusses the development of the API, called the

persistency API, for supporting the persistent data sessions. Without persistent
session support, network applications often need to be restarted from the beginning
when intermittent physical connection loss happens. Application programmers can use
the persistency API to achieve the service continuity. The persistency API provides
the interface that allows a program to continue retrieve data from the point the
connection is lost after the physical connection is restored. The focus of this thesis
is to develop a generalized persistency API that supports various types of
applications. This thesis studies the persistent session support for two types of
transport protocols, TCP and UDP, which are used by major network applications. An
application that performs text file and video file transfer is implemented to
demonstrate the persistent data transfer sessions for TCP and UDP, respectively. The
study shows that the proposed APIs can support the data transfer continuity in the
reconnection process.

14. SUBJECT TERMS Persistency API, M-TCP, UDP, TCP, PFTP 15. NUMBER OF
PAGES

165

16. PRICE CODE

17. SECURITY 18. SECURITY 19. SECURITY 20. LIMITATION
CLASSIFICATION OF CLASSIFICATION OF THIS CLASSIFICATION OF OF ABSTRACT
REPORT PAGE ABSTRACT

Unclassified Unclassified Unclassified UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

THIS PAGE INTENTIONALLY LEFT BLANK

ii

Approved for public release, distribution is unlimited

API DEVELOPMENT
FOR PERSISTENT DATA SESSIONS SUPPORT

Chayutra Pailom
Captain, Royal Thai Army

B.S., Chulachomklao Royal Military Academy, 1997

Submitted in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
March 2005

Author: Chayutra Pailom

Approved by: Su Wen
Thesis Advisor

Arijit Das
Thesis Co-Advisor

Peter J. Denning
Chairman, Department of Computer Science

iii

THIS PAGE INTENTIONALLY LEFT BLANK

iv

ABSTRACT

This thesis studies and discusses the development of

the API, called the persistency API, for supporting the

persistent data sessions. Without persistent session

support, network applications often need to be restarted

from the beginning when intermittent physical connection

loss happens. Application programmers can use the

persistency API to achieve the service continuity. The

persistency API provides the interface that allows a

program to continue retrieve data from the point the

connection is lost after the physical connection is

restored. The focus of this thesis is to develop a

generalized persistency API that supports various types of

applications. This thesis studies the persistent session

support for two types of transport protocols, TCP and UDP,

which are used by major network applications. An

application that performs text file and video file transfer

is implemented to demonstrate the persistent data transfer

sessions for TCP and UDP, respectively. The study shows

that the proposed APIs can support the data transfer

continuity in the reconnection process.

v

THIS PAGE INTENTIONALLY LEFT BLANK

vi

TABLE OF CONTENTS

I. INTRODUCTION .. 1

A . PROBLEM STATEMENT 1

B. SCOPE AND METHODOLOGY 1
C. RESEARCH QUESTIONS 4

D . ORGANIZATION 4

II. BACKGROUND AND RELATED WORKS 7

A. RELIABLE CONTENT DELIVERY WITH PERSISTENT DATA

S E S S I O N S . 7

1 . Background 7

B. EXISTING APPROACHES IN PROVIDING PERSISTENT DATA

S E S S I O N S . 9
1. Migratory Transmission Control Protocol (M-

T C P) . 9

a . Overview 9
b. Goals and Features of M-TCP 10
c. M-TCP Mechanism 11

2. Reliable Content Delivery Using Persistent
Data Sessions in Highly Mobile Environment ... 13

a. PFTP Mechanism 14

III. API DESIGNS FOR PERSISTENT DATA SESSIONS 19
A. INTRODUCTION TO APPLICATION PROGRAMMING INTERFACE .19

1 . Introduction 19

B. API SUPPORT FOR PERSISTENT DATA SESSIONS 21
1. Practical Consideration 21
2. Problem Concern 23

C. API DESIGN FOR VARIOUS NETWORK APPLICATIONS 25
1 . P u rp o se . 2 5
2. Area of Research 25

IV. DESIGN AND IMPLEMENTATION 27
A . D E S I G N . 2 7

1. Main System Components 27

a. Graphic User Interface 28
2. Software and Development Tool 30
3. Basic API and Program Interactions 31

a. File Transfer 31
b. Client-server Communication Protocol 32
c. Activity Diagram 35
d. Class Diagrams 36

B. PERSISTENCY API IMPLEMENTATION 38
1 . Overv iew 38

vii

2. The Use of Persistency API 40

a. Using Persistency API for TCP 42
b. Using Persistency API for UDP 43

C. APPLICATION USAGE GUIDE 45
1 . C l i e n t . 4 5
2 . S e r v e r . 4 8

V . T E S T IN G . 5 1
A. TESTING NETWORK DESCRIPTION 51

1. Practical Considerations and Limitations 51
2. Testing Network 52

B. TESTING SCENARIOS 53
1. Scenario Reference Code and Scenario's

Description 54

C . TESTING RESULTS 54

VI. CONCLUSION AND FUTURE WORKS 63
A . SUMMA R Y ... 63
B . FUTURE WORK 64

1. Communication Protocol Design 64
2. Application Development 65

APPENDIX A. CLASS SOURCE CODE 67

APPENDIX B. CLASS DIAGRAMS 141

LIST OF REFERENCES ... 149

INITIAL DISTRIBUTION LIST 151

viii

LIST OF FIGURES

Figure 1. Migration mechanism in M-TCP 12

Figure 2. The communication scheme of PFTP application 14

Figure 3. The message request of PFTP application 14

Figure 4. The communication protocol of PFTP application. .16

Figure 5. OSI Model with API 21

Figure 6. API support for end-to-end connection 21

Figure 7. API message flows 24

Figure 8. Preview of the client's user interface 30

Figure 9. Preview of the server's user interface 30

Figure 10. The communication scheme with persistency API

su p p o rt . 3 2
Figure 11. A request message packet 33

Figure 12. The communication protocol with API support 34

Figure 13. The activity diagram for persistency API 36

Figure 14. The class diagram for API support application.. .37

Figure 15. Client's selection panel 45

Figure 16. Client's second panel for TCP session 46

Figure 17. Client's second panel for UDP session 47

Figure 18. Client's second panel during TCP transmission.. .47

Figure 19. Client's second panel during UDP transmission.. .48

Figure 20. Information message from the server 49

Figure 21. The server process 49

Figure 22. The server's transmission process for TCP

s e s s i o n . 5 0
Figure 23. The server's transmission process for UDP

s e s s i o n . 5 0
Figure 24. The home-based networking architecture 52

Figure 25. The NPS-based WAN network setup 53

Figure 26. The server establishes the connection 55

Figure 27. The server is ready for the TCP file transfer.. .55

Figure 28. The server is ready for the UDP file transfer.. .56

Figure 29. The proxy server process for a TCP session 56

Figure 30. The proxy server process for UDP session 56

Figure 31. The server process after new connection 57

Figure 32. The response of client side for CUIS-1 57

Figure 33. The information message of the client (1) 58

Figure 34. The information message of the client (2) 58

Figure 35. The persistency API's reconnection process 59

Figure 36. The client's user interface during connection

f a i l u r e . 6 0
Figure 37. The message from API showing the status (1) 60

Figure 38. The message from API showing the status (2) 60

ix

Figure 39. The final confirmation message 61
Figure 40. Class diagram of the application client 142
Figure 41. Class diagram of the persistency API 143
Figure 42. Class diagram of the RTP packet 144
Figure 43. Class diagram of the application server 145
Figure 44. Class diagram of the application proxy server..146
Figure 45. Class diagram of the streaming video for RTP

an d R T SP . 14 7

x

ACKNOWLEDGEMENTS

I would like to dedicate this thesis, the result of

two years and three months graduate study at the Naval

Postgraduate School, to my family who has encouraged me

through the process.

I would like to express my appreciation to my advisor,

Professor Su Wen. I could not have imagined having a better

supervisor and mentor for my master, and without her

commonsense, knowledge, perceptiveness, supervision and

support I would never have finished. I would also like to

thank my Co-Advisor, Arijit Das, for his administrative and

technical assistance and encouragement to read the whole

thing so thoroughly.

Finally, I want to thank my country and Royal Thai

Supreme Command who gave the opportunity to have this

Master's degree in Computer Science in the United States of

America.

xi

THIS PAGE INTENTIONALLY LEFT BLANK

xii

I. INTRODUCTION

A. PROBLEM STATEMENT

One of the problems during the Signal operation in

Thailand is the lack of service continuity of the data

communication between end users at the application level.

To complete the mission, the applications need to be fully

transferred regardless if the state of the physical

connection is disrupted or not. Currently, an error or the

loss of the physical connection during the data transfer

sessions can cause the disruption in the application

operation. It requires manual restarting of the

application. If the physical connection is lost either from

the system itself or from the interference, it is not easy

to reconnect at the beginning of the session and retransmit

the entire data in order to provide the reliable content

delivery. However, in each Signal operation, such

applications have to be resubmitted as soon as possible to

ensure the survivability of the service. To achieve the

goal of the mission for this case, not only must the

service survivability be established but the applications

also need to operate seamlessly in the face of a physical

connection loss. The interrupt data or the state of the

connection must be continued from the point it was stopped.

B. SCOPE AND METHODOLOGY

This thesis develops an application-level support of

persistent sessions to various applications. Specifically,

APIs for general applications using persistent connection

are designed and implemented.

1

The research follows the methodology that can be

conducted as follows. Firstly, the research starts with

searching for the existing protocol emphasizing File

Transfer Protocol, Real Time Streaming Protocol, and

Telnet. The study of these protocols can be background

knowledge in order to extend this concept for this

research. The research then goes on specifying each

protocol parameters and application requirements for both

user interface and the connection protocols. This area has

to be studied in depth because the result from development

for each parameter effects the system. The critical session

of this research is to design and develop a reconnection

session using API for each application protocol. The

development of the API can be done using the supporting

idea above and this API can be used for generic

applications in the future. Finally, the testing phase for

the implemented API needs to be achieved in order to

guarantee the service for persistent sessions. This testing

is conducted on a wired environment to reconnect the FTP,

RTSP or Telnet respectively. If time permits, the migration

of each protocol will be developed to support this

research.

Since Java programming language is popularly used in

computer network programming and provides a good

modularity, it was chosen to develop the APIs for this

thesis. Currently, there are a number of classes in Java

that can be used to support the reconnection session for

network protocols. However, each protocol has to be

written by the programmers on their own to provide the

reconnection session when it lost. No APIs specific for

persistent session support are currently available for

programmers to use directly. This thesis focuses on
2

building new APIs that programmers can write applications

with regardless of the underlying network protocols the

applications are using.

The network environment used for this thesis work was

based on a wired environment. The research was performed on

an end-to-end user's connection. The implementation was

conducted using a connection on the same network and used a

variety of protocols to transmit the information and test

the API. A wireless scenario was an additional environment

tested for mobile device. As a result, this API can be

extended in its capability to fully support the wireless

environment. Therefore, both client and server for this

research was a workstation running a Windows operating

system.

The thesis did not consider the following as part of the

implementation:

0 Security: The security aspect of the development is

not covered. Even though it will be used for the military

operations, the initial purpose for this development is to

achieve the survivability of the service. There is a

security tunneling design that would be appropriate to

encapsulate for each session. Future research may be

necessary for the extension of this work to increase the

level of security.

0 Scalability: Even though the multitasking approach is

suitable for designing on the server-side application

transferring the data to other hosts, this thesis does not

address the capability to support a large number of users

that produce heavy traffic as a single server.

9 Speed of recovery: For this thesis work, speed is not

an important factor of an experiment. The speed of the

3

transmission is forced by the physical connection media and

performance of both the sender and receiver, which are not

the main factors to be observed.

C. RESEARCH QUESTIONS

The following questions are considered in this thesis:

"* What are the key components of persistent session

service?

"* What are the key components that must be implemented

in preparing API to support application layer needs?

"* How can this API support the reconnection session?

"* What types of applications can benefit most from the

protocol developed?

"* How can this communication supplement be flexible when

the availability of the information server varies?

D. ORGANIZATION

The covered material is organized into the following

chapters in order to fulfill the objectives of this thesis.

Chapter II covers the background and related works that

provide the introduction to Persistent Data Sessions and

previous research works. Chapter III refers to the on-going

Reliable Content Delivery using Persistent Data Sessions

along with the development of Application Programming

Interface related to this thesis project. Chapter IV covers

the design and implementation of the thesis process. It

describes the software design and programming procedure of

the prototype in detail. It also mentions how the most

important features of the API are supported in the

reconnection state. Chapter V summarizes the testing phases

of the API development and objects models. Specific

4

scenarios are conducted for each protocol appropriately.

Finally, Chapter VI presents the conclusion, recommendation

and the future work to be continued in the establishment of

persistent data sessions by extending this thesis work to

support the wireless environment.

5

THIS PAGE INTENTIONALLY LEFT BLANK

II. BACKGROUND AND RELATED WORKS

This chapter will discuss the general knowledge and

the previous research regarding persistent data sessions

that are related to the concept of this thesis work. The

concept of persistent data sessions and an overview of the

existing network-continuity protocols that have the

reconnection characteristics will be introduced separately.

A. RELIABLE CONTENT DELIVERY WITH PERSISTENT DATA

SESSIONS

1. Background

This section refers to the general idea of persistent

data sessions which provides reliable content delivery of

the data communication. According to TCP/IP model, this

procedure is referred to the process at the application

layer. Before going into the detail of persistent sessions,

the term 'session' will be described as a fundamental idea

for this section. A session is either a lasting connection

using the session layer of a network protocol or a lasting

connection between a user (or user agent) and a peer,

typically a server, usually involving the exchange of many

packets between the user's computer and the server. A

session is typically implemented as a layer in a network

protocol [1] . In the case of transport protocols which do

not implement a formal session layer or where sessions at

the session layer are generally very short-lived, sessions

are maintained by a higher level program using a method

defined in the data being exchanged.

To get the information from a server, a system may

issue a "request" packet to the server. If a "reply" packet

7

arrives in response, the transferring session will be

started by using one of the following transport protocols:

"* Transmission Control Protocol (TCP) providing a one-

to-one connection oriented, reliable communication

service of the sequence and acknowledgement of packets

sent and recovery of packets lost during transmission.

"* User Datagram Protocol (UDP) providing one-to-one or

one-to-many connectionless, unreliable connection

service which is used when the amount of data to be

transferred is small, when the overhead of

establishing a TCP connection is not desired, or when

the application or upper-layer protocol provide

reliable delivery.

Extended from the concept of the term 'session,

persistent data sessions, or persistent connections which

are sometimes called "keep-alive" connections or

"connection reuse," can be used to optimize the way servers

return content to the client. It is the idea of using the

transport protocol connection to send and receive multiple

requests or responses, as opposed to opening a new one for

every single request or response pair. As proposed, the

client can send multiple requests on a single connection.

This capability is negotiated in response to the first

request on a connection. The server can choose how many

requests it will allow on a persistent connection and also

how long to wait for subsequent requests before terminating

the connection. Most servers will allow you to configure

these things.

There are several advantages of using persistent

connections [2] including:

8

"* Network friendly. Less network traffic due to fewer

setting up and tearing down of connections.

"* Reduced latency on subsequent request. Due to

avoidance of initial protocol handshake

"* Long lasting connections allowing protocols sufficient

time to determine the congestion state of the network,

thus to react appropriately.

B. EXISTING APPROACHES IN PROVIDING PERSISTENT DATA
SESSIONS

This section is about the existing protocols related

to the service continuity characteristic. The concept of

both kinds of protocol is related to each other but

different in the level of operation. M-TCP is resided in

the transport layer which provides the guarantee service

similar to TCP but has additional features in order to

achieve the service continuity. Another protocol called

PFTP is a little bit different from the first protocol

because it is developed at the application layer which uses

TCP as an underlying protocol. The details of each will be

described following.

1. Migratory Transmission Control Protocol (M-TCP)

a. Overview

This protocol is proposed from the Laboratory for

Network Centric Computing (Disco Lab) at Rutgers University

[3]. The concept of this protocol is called service

continuity. M-TCP is a transport layer protocol for

building highly available network services by means of

transparent migration of the server endpoint of a live

connection between cooperating servers that provide the

same service. The origin and destination server hosts

cooperate by transferring supporting state in order to

accommodate the migrating connection. It is one of the

9

network reconnection solutions to reestablish another

connection using the point that lost the connection to the

previous server to try to reconnect to another server for

retrieving the same information at the point it was lost.

Therefore, the two servers that serve such clients have to

have good coordination between each other.

The client starts a service session by connecting

to a preferred server, which supplies the addresses of its

cooperating servers, along with authentication information.

The client endpoint of a connection can initiate a

migration by contacting one of the alternate servers. The

migration trigger may reside with the client or with any of

the servers. The server endpoint of the connection migrates

between the cooperating servers, transparent to the client

application.

This protocol is compatible with TCP in which the

client protocol stack can initiate migration of the remote

end point of live connection to an alternate server.

Migration is transparent to the client application. M-TCP

decouples the migration mechanism from migration policy

that specifies when a connection should migrate. Migration

may be triggered according to some migration policy under

conditions like server overload network congestion, the

loss of physical connection, degradation in performance

perceived by client, etc.

b. Goals and Features of M-TCP

The goal of the M-TCP is to support the

efficiency of live connections. It also offers a better

alternative than the simple retransmission to the same

server, which may be suffering from overload or Denial of

Service attack, or may be known or maybe not be easily

10

reachable due to congestion, and decouples a given service

from the unique/fixed identity of its provider.

This protocol has features as the following. It

is general and flexible which means that it doesn't rely on

knowledge about a given server application or application

level protocol. It allows fine-ground migration of live

individual connection, unlike heavyweight process migration

schemes, and it is symmetric with respect to and decoupled

from any migration policy

c. M-TCP Mechanism

The M-TCP design assumes that the state of the

server application can be logically split among connections

by defining a fine-grained state associated with each

connection.

The M-TCP service interface can be best described

as a contract between the server application and the

transport protocol. According to this contract, the

application must execute the following actions: (i) export

a state snapshot at the old server, when it is consistent

with data sent/received on the connection; (ii) import the

last state snapshot at the new server after migration, to

resume service to client. In exchange, the protocol: (i)

transfers the per-connection state to the new server and

(ii) synchronizes the per-connection application state with

the protocol state.

11

Client<Cid>Cooperative

servers

....

SYN +MIG.*-F

(a)"

2

Figure 1. Migration mechanism in M-TOP.

From Figure 1, Connection Old, initially

established by client 0 with server S2, migrates to

alternate server S2. The migration mechanism of M-TOP

ensures that the new server resumes service while

preserving the exactly-once delivery semantics across

migration, without freezing or otherwise disrupting the

traffic on the connection. The client application does not

need to change.

A client contacts the service through a

connection Oid to a preferred server Si. At the connection

setup, Si supplies the addresses of its cooperating

servers, along with migration certificates. The client-side

M-TOP initiates migration of Oid by opening a new

connection to an alternate server S2, sending the migration

certificate in a special option. (Figure 1 (a)) To

12

reincarnate Cid at S2, M-TCP transfers associated state

(protocol state and the last snapshot) from SI.

Depending on the implementation, the state

transfer can be either (i) lazy (on-demand), i.e., it

occurs at the time migration is initiated, or (ii) eager,

i.e., it occurs in anticipation of migration, e.g., when a

new snapshot is taken. Figure 1 shows the lazy transfer

version: S2 sends a request (b) to Si and receives the

state (c) . If the migrating endpoint is reinstated

successfully at S2, then C and S2 complete the handshake,

which ends the migration (d).

Upon accepting the migrated connection, the

server application at S2 imports the state snapshot. It

then resumes service using the snapshot as a restart point,

and performs execution replay for a log-based recovery

supported by the protocol. The execution replay restores

the state of the service at the new server and synchronizes

it with the protocol state. To support the replay, M-TCP

logs and transfers from Si data received and acknowledged

since the last snapshot. It also transfers unacknowledged

data sent before the last snapshot, for retransmission from

S2.

2. Reliable Content Delivery Using Persistent Data
Sessions in Highly Mobile Environment

The work was to develop a client-server file transfer

application named Partial File Transfer Protocol (PFTP) to

demonstrate a possible solution to the problem of a lack of

persistent data sessions in wireless mobile networks and

LANs. This protocol was developed at the application level

which used TCP as an underlying protocol. For this purpose,

a prototype communication protocol between the client and

the server were designed using Java Technology to achieve

13

dynamic partial file retrieval in the event of connection

loss. The goal is to produce an application user interface

that visualizes the partial file retrieval process in real

time. This is a proof of concept for service continuity

protocol development. Since it has a limitation in

transport protocol development, it can support some

applications that use TCP as an underlying protocol only.

As a result, the concept of this work is to be extended in

order to support various applications that use either TCP

or UDP as an underlying protocol.

a. PFTP Mechanism

PFTP is an application layer protocol that is

based on a client-server communication scheme. For the file

transfer process, an application layer communication

protocol must be established. The TCP protocol is the

underlying protocol for every connection and data transfer

between the client and server (Figure 2).

PFTP TcP based PFTP
Client Server

Figure 2. The communication scheme of PFTP application

File Request Message

:Request File
Type Name File Name offset Packet Size

Figure 3. The message request of PFTP application

14

This communication protocol is shown in Figure 4

[4] and starts with the PFTP server running and waiting for

clients at port 6789. When the user opens the PFTP client

application, it must choose a PFTP server manually or from

a list of already existing servers in order to retrieve the

list of files available for transfer. In the predefined

server case, an Auto server mode option exists which can be

selected when the user wants the application to choose a

predefined PFTP server randomly during either the initial

available file retrieval or the partial file retrieval

process after a connection loss. When the file list is

retrieved, a user selects a file name and the packet size

and forms a file request packet that is sent to the server.

The request packet fields are shown in Figure 3.

15

Uu selectI6 a soirer to Whn o let

aI~ ot trnse Ask f,01 --. r*be il

User aak tillverrapilesi
mmstar ~ ~ ~ ~ ~ ~ ~~ sndn tuhe............

Sn --I-t--"- 11 eI" ath e file ipli d

c ornP t ffs a n d@

*n te fle • • f ml•hash value

does, kends thed the i e t1 mand fth ft s valu -------------

back o clint. Ten th sererP~I starts raigte file

dat eadcendsiting pacet to fh let uie theb

fil - - - -----------

packet transmission, a connection failure occurs, the

client side generates partial-file-request packet, setting

the offset field value with the next expected packet

counter and the hash field value with the file hash

received at the start of the file transfer. Then the client

attempts to reconnect with the same server or, if the Auto

server mode is selected, with the next available PFTP

server, and when it is connected, sends the prepared

partial-file-request packet.

The server that receives the packet, if the

offset value is greater that zero, checks if it has the

same file with the same hash value and continues sending

the remaining data in packets to the client. Each file

connection loss causes the same partial transfer retrieval

scheme until the client receives all the file packets and

both the client- and server-sides close the connection.

17

THIS PAGE INTENTIONALLY LEFT BLANK

18

III. API DESIGNS FOR PERSISTENT DATA SESSIONS

This chapter provides an introduction to the

background, capability, and purposes of the APIs used for

this thesis. APIs developed for this thesis to support

persistent sessions for various applications will be

presented.

A. INTRODUCTION TO APPLICATION PROGRAMMING INTERFACE

1. Introduction

An Application Programming Interface (API) defines how

programmers utilize particular computers features. Some

often used APIs provide programmers with access to display

system, file systems, database systems, and networking

systems. The APIs developed in this thesis are designed to

support a structured approach to network programming.

Special attention has been paid to the needs of multimedia

applications and to the future requirements of network

protocols. After surveying the current approaches, the need

was observed for an interface that provides ease of use,

extendibility and portability. An object-oriented method

that will meet these needs is chosen.

Currently, application programmers are writing more

details for underlying functionality and using specific

code to interface with the network and transport layers

defined by the OSI model. This requires that programmers

learn how to communicate with the underlying network.

Technicalities include opening and closing communication

channels and manipulating data structures. An example of a

low level interface used by application programmers is the

Berkeley Sockets interface which UNIX systems support [5].

19

Many applications that run over networks contain this

type of interface or one of equivalent complexity.

Moreover, the complexity is coupled with redundancy; not

only must an interface be written for every application, if

a programmer changes the protocol an application is using,

the program's interface to the transport and network layers

needs to be rewritten.

This non-portability of applications between network

and transport layer protocols could be aggravated by the

availability of new, more intricate network level protocols

which provide features for multimedia and real-time

applications. These protocols are designed to support

resource allocation. They allow applications to specify

their performance requirements and receive performance

guarantees. Although the demand for these services has been

firmly established, easy access to the protocols that

supply them has not yet been made widely available. With

such a variety of protocols and the complexity inherent in

implementing them, it would be efficient to supply

application programmers with a high-level interface to the

underlying layers. The need for improvements in system

software in order to not only support the basic reliable

protocol but also support real-time and multimedia

application has been recognized by previous research. For

these reasons, a generic Application Programmer Interface

(API) which acts as a level of abstraction between the

application programmer and the network and transport layer

protocols are developed. Figure 5 shows the architecture

where API abstractly resides within the OSI model.

20

-- Application Layer

STransport Layer

W Network Layer

- Data Link Layer

Figure 5. OSI Model with API

The following figure is an example of the data flow

from side to side using API support starting from the

application layer.

Figure 6. API support for end-to-end connection

B. API SUPPORT FOR PERSISTENT DATA SESSIONS

1. Practical Consideration

During a normal network session, servers will usually

have some time-out value beyond which they will no longer

maintain an inactive or lost connection. Proxy servers

21

might make this a higher value since it is likely that the

client will be making more connections through the same

server. The use of persistent connections places no

requirements on the length (or existence) of this time-out

for either the client or the server.

When a client or server wishes to time-out, it should

issue a graceful close on the transport connection. Clients

and servers should both constantly watch for the other side

of the transport close, and respond to it appropriately. If

a client or server does not detect the other side's close

promptly it could cause unnecessary resource drain on the

network.

A client, server, or proxy may close the transport

connection at any time. For example, a client might have

started to send a new request at the same time that the

server has decided to close the "idle" or "lost"

connection. From the server's point of view the connection

is being closed while it was idle, but from the client's

point of view a request is in progress.

This means that clients, servers, and proxies must be

able to recover from asynchronous close events. Client

software should reopen the transport connection and

retransmit the aborted sequence of requests without user

interaction so long as the request sequence is idempotent.

We propose to develop software procedures at the

application layer and generate APIs for general use. Non-

idempotent methods or sequences must not be automatically

retried, although user agents may offer a human operator

the choice of retrying the request(s). Confirmation by

user-agent software with semantic understanding of the

application may substitute for user confirmation.

22

Servers should always respond to at least one request

per connection, if at all possible. Servers should not

close a connection in the middle of transmitting a

response, unless a network or client failure is suspected.

2. Problem Concern

From a consideration above, the problem will be mainly

focused on the lost state. When a physical connection is

lost, that means the connection has to be reestablished and

the data has to be retransmitted from the beginning of the

file. For TCP connection, even though it uses a connection-

oriented mechanism which controls the content of the data

to be sent appropriately, it is necessary to make a new

connection manually for this scenario. The API will help

the programmers during this session by automatically

detecting the physical connection and making a new

connection instead of the client. In case of an unreliable

connection like UDP, the data is being sent regardless of

the packet loss. To be a persistent session, the proposed

API will control the rest of the data in order to achieve

the virtual reliable protocol as a persistent data session.

In order to assist users in programming the process of

reconnection, the procedure of the reconnection phase will

have to be provided step-by-step. There is no programming

library that can support all of the steps for the

reconnection process. This is also applied to the states of

connectionless session. The lost connection has to be

reestablished in order to complete sending the file to the

destination.

As above, the API is another proposed solution for an

easier reconnection. Such a package can be called to

manipulate the physical connection instead of doing so

manually. All the programmers need is to call this package

23

which consists of the related functions to reconnect the

ongoing session when the physical connection has been lost.

Therefore, while the data is being transferred to the

destination, the state of the connection and the critical

parameters the program is using at that time have to be

tracked or recorded in order to make a reconnection without

prompting the user. The following figure is an example of

the API process for mobility client [6]. This client can be

both mobility and stationary object.

Si wMessage

messge Queue

Messages~ Loo

V w Prbure M !e Cnier Events

Figure 7. API message flows

24

C. API DESIGN FOR VARIOUS NETWORK APPLICATIONS

1. Purpose

For this thesis project, the APIs are not developed

for specific applications, but aim to be used by a

multitude of programs that use either TCP or UDP as an

underlying protocol. Therefore, the existing socket APIs

will be used as supporting libraries for the implementation

of the new API. The development of the software-based

application will be performed in JAVA technology

programming.

2. Area of Research

Although there are a variety of the applications used

in today's networking scope, the underlying protocols of

such applications are still either TCP or UDP. The API

will be developed to support the problem mentioned above

along with the development of the client and the server

application for a particular scenario. This thesis will

develop the API to be suitable for various applications

using TCP or UDP as an underlying protocol. Ideally, it has

to be developed to be suitable for all applications (e.g.

FTP, Telnet or UDP-related applications), but for this

thesis not all applications will be covered because of the

different characteristics of each application. Each user-

defined protocol has different states and parameters to be

reconnected so that the thesis project will be focused on

the service continuity based on the popularity of

applications. The protocols we are researching are File

Transfer Protocol (FTP) , which uses TCP as an underlying

protocol, and Real Time Protocol (RTP) , which uses UDP as

an underlying protocol. These two applications can be

instances of the development for transport protocol.

Certain features of real time applications, such as

25

synchronization, are not currently supported but are

addressed as areas for further study.

26

IV. DESIGN AND IMPLEMENTATION

This chapter presents the critical parts of the

project, including the APIs developed for persistent

session support and the client-server application that

utilizes the APIs. The details of the API and the GUI

implementation are discussed. The application-user

interactions are presented at the end of this chapter.

A. DESIGN

1. Main System Components

For the rest of this thesis, we will refer the APIs

developed in this research to support persistent sessions

the Persistency API. The application developed for this

thesis has three major components: the server, the client

and the persistency APIs. The details of each component are

discussed below:

"* Server - It is the data source in the communication

and can handle multiple connections as needed. It

needs to understand two types of requests, which is

indicated in the initial connection message: the

connection request and the reconnection request. The

reconnection request contains more information than

the first type. Based on the type of request and the

information associated with it, the server determines

the starting point of the data to be sent.

"* Client - It provides the user interface and interacts

with the user in order to meet the user requirement.

It starts the reconnection process in the face of

physical connection loss by calling the persistency

APIs without user intervention. The user needs to

27

input the arguments required for the persistency APIs

at the initialization.

* Persistency APIs - It supports the service continuity

between the server and the client. It is the

additional API derived from the existing library that

the client needs to maintain persistent sessions for

both TCP and UDP connections. It is defined as a class

and can be called by the client when it detects a

physical connection failure.

Persistency API is a major component in the

application development and is used at the client side. The

application runs in two modes, TCP and UDP. In the TCP

mode, it transfers a file from server to client and can

recover from temporary connection loss. In UDP mode, it

transfers a video from server to client and can recover

from temporary connection loss. In video file

transferring, there are two types of protocols involved for

the session. Real Time Streaming Protocol (RTSP) and Real

Time Protocol (RTP) . RTSP is used for video control session

that uses TCP as an underlying protocol. RTP is used for

retrieving the video packets which is one of UDP

communications. The development is mainly focusing on the

RTP session in order to provide the continuity of the

video.

a. Graphic User Interface

Both client and server modules will provide a

user-friendly interface. In this initial version the user

interface of the client side will provide three main

services:

28

"* Protocol selection for the data transfer

communication. The user must be able to select one

of the transport protocols for the data transfer.

"* View of the data transfer progress. A progress bar

with the percentage of the file transfer session

completed is implemented.

"* View of the content of the file for both cases of

text file and video file at the client side. These

services are represented as separate panels to the

user interface frame. Figure 8 shows a primitive

version of a user interface at the client side.

For the server side, it is unnecessary to provide

the user interface. Figure 9 shows an initial version of a

graphical user interface (GUI) at the server side. The

important GUI will be provided for the following purposes:

"* View of the server operation for the connection

process.

"* View of the server operation during file transfer.

This application will be provided in a separate

panel.

29

Command
Client is ready
Please choose one of the commands at the command bar

. .C..los.e. . C -onn1 . ..e.ct

Figure 8. Preview of the client's user interface

Server is waiting for a clientto establish the connection...

Exit

Figure 9. Preview of the server's user interface

2. Software and Development Tool

The test application and persistency APIs are written

using the Java programming language. JBuilder9 Java editor

environment is used to develop the application. For both

30

the server-side and the laptop/desktop client version, the

Java 2 Standard Edition (J2SE) with the Java Development

Kit 1.4 (JDK 1.4) is used. Persistency APIs for this

application are developed based on existing Java libraries.

The following systems are needed to run the

application with persistency API support:

"* Server: Windows 98, NT, 2000 or XP operating system

and a Java Virtual Machine.

"* Client (desktop/laptop) : Windows 98, NT, 2000 or XP

operating system, Java Virtual Machine and the Java

2 SDK1.4 installed.

3. Basic API and Program Interactions

The user must specify the preferred type of transport

protocol, which is either TCP or UDP, before starting the

data transfer. For this thesis project, the selected

transport protocol determines the type of application, file

or video transfer, the client and the server will perform.

As indicated in section A.1, selecting TCP will result in

starting a file transfer application, and selecting UDP

will result in starting a video transfer program. The

specification of the type of the protocol must be done at

the beginning of the execution.

a. File Transfer

The file transfer from the server to the client

results from a client-side user request. The file size of a

desired file is first transferred to the client so it can

be used to display the progress bar. The server sends the

file as a series of packets (arrays of bytes or arrays of

frame) that the client collects until it receives all the

content of the file. The client application keeps track of

the number of packets received. In case of the physical

31

connection failure during the transfer, the persistency

API, which resides at the client side, is used to reconnect

until the physical connection is resumed. The new

connection state is returned to the client, and the client

continues to retrieve the rest of the packets until the end

of the file. Thus, the client doesn't have to restart the

connection and receive the content of the application from

the beginning. If the physical connection is lost again,

the same process will be repeated as before.

b. Client-server Communication Protocol

For the file transfer process, an application

layer communication protocol must be established. The

following figure shows the abstract of the communication

protocol with persistency API support:

Persistency API

TCP

Client server
UDR

Figure 10. The communication scheme with persistency API
support

The application starts with the server running

and waiting for the client at either port 5555 for TCP or

port 9999 for UDP connection. After the user starts the

client application and makes a selection of the type of

protocol to be used, the server will respond to the client

connection request without any user intervention.

32

After an initial connection is established, a

file size request will be sent followed by the file content

request from the client to the server. The request packet

field is shown in Figure 11:

iRequest iType Offset Packetii

Figure 11. A request message packet

After receiving the first request from the

client, the server sends the file size in bytes back to the

client. Then it waits for the client's next action. After

getting the next request, the content of the file will be

sent as a series of packets to the client.

33

Client .Server

.._•••Sewaltin for tha size !a. t

Userdselectsitperefuest)E•c!t the serve
appelicationtn form the fieAs.oriesz

trnse an trssfe fie a

fo pdacnts atio

., t.en..g ll

Gat a n file pia c s. a-nd '*a'dy

fI thee next aoene Ask

~S n tlen hns eh f- ler-,u
| conne action Iost read toigasde f••

I ~ ~ ~ ~ ~ ~ ~ ~ tase filetlh P eqelull e~@

S-. • •;l~ent jStare t sond•h filea ,
S• series olpacke~ ut il

Cloe e•the owleto

Clen mmse rtlLee

Figure~th 12 Tecomnilcation protcolwit API supporth

reumc Ml acnncto34ealo

If, during the transmission, a physical

connection failure occurs, the client side must detect it

by using a time-out mechanism. A distinction between the

packet loss and the physical connection failure can be

judged by Java application exceptions. After detecting the

failure, the client will call the persistency API to

reconnect to the same server. A series of reconnect

requests will be sent out until a reply from the server is

heard. After the connection is resumed, information needed

to reestablish a connection is sent to the server and the

client's important parameters are being updated in order to

continue the session. The client will continue to receive

the rest of the data after the persistency API call is

returned. Each physical connection loss causes the same

partial transfer retrieval scheme to take place until the

client receives all the data packets and both the client

and server sides close the connection.

c. Activity Diagram

Figure 13 shows the activity diagram for API

support application

35

S'ta r t s t a t e : C l i e n t s t a r t e d S t a r t s t a L e : S e r v e r s t a rt e d

[open up the nneton [Re fi' cnent]

,er ; .nic API

Clhe the ock

Figure 13 Thneactivitt y diagrm fWaitinor fr a client

Thnecto folaloingd Fiue1,sowsecthen relatbionshi

[A[Ask for ile
,size.]

[
'Send ile size]

between
rtcesvn the fo thisthe thesis

proje
[en lost]

[i o-n flost3
[Ie

n 'hr
'

•I[G,

nt
•q

]

Ne

No

Figure
acket Theacivity

di agram
fo

e sstency
AP

d . Clse s Di a ram
betwen

te lases
focor

Close
thesi

conoject:

[Gt n he fle Go aot reuet

rcd

java.awt Client java.awt.eueet

ConnectionControl
BorderLayout RTPpacket ActionEvent

ComponeMt Server __ ActionListener

Container ServerThread WindowAd.pter

Dimension - VideoStream -ndowEvent

GridLayout WindowListener
Imagqe

LayooftManager
TholtMt jaua.lang

ArraylndexOutOfBoundsException

jaua.io Character
Exception

BufferedReader Integer
BufferecVkiter NullPointerException

File - NumberFormatException

FilelnputStream Object

FileNotFoundException R .n,?b /e
FileReader String

IOException - - - StringBuffer

IiputStream System

InputStrearnReader Thread
InterruptedlOException
00wtStream

OLAputStreamVn~iter jaua.util
PrintStreamrr

Reader. StringTokenizer
LWnter

java.net
jauax.swing

Icon
ConnectException Imagelcon

DatagramPacket JButton
DatagramSocket JFrame

InetAddress JLabel
NoRouteToHostException -JMenu

ServerSocket -menuBar

Socket JMenuftem

SocketException JOptionPane
SocketTimeoutException JPanel

UnknownHostException JProgressBar

JScrollPane

JTextArea

Timer

Figure 14. The class diagram for API support application

In addition, Appendix B shows the client

desktop/laptop, the server and the API versions of the
37

class diagrams for the content of each class. Appendix B

also includes the supporting classes for UDP sessions,

which have RTPpacket and VideoStream classes at the client

side.

B. PERSISTENCY API IMPLEMENTATION

The main purpose of the application developed for this

thesis is to experiment and validate the persistent session

support used. The specific API for such support, called

the persistency API, is used at the client side. An

instance of this class is one of client object members.

1. Overview

The 'ConnectionControl' class is created to provide

persistent session support. It is coded to be an agent for

executing the reconnection process on behalf of the client.

This class has to be initialized at the first stage of the

application execution, after the client object is created.

It is also created as an object in order to cooperate with

the client object. Therefore, the client has a particular

function called fileControl (Client client, int port, String

host) that initializes the ConnectionControl object. In the

fileControl(), three parameters are used to initialize the

persistency API object; client is the client object, port

the initial communication port between client and server,

and host the IP address of the server. The command for

initializing the persistency API object is:

controlAgent = new ConnectionControl(Client client,

int port, String host);

The controlAgent is an instance of the persistency API

object. It needs to be initialized in order to coordinate

with the client's object. For this initialization, there

are three arguments at the first time of the

initialization. These two latter arguments have to be set

38

in the initial values and may be updated later on. The

ConnectionControl class has a critical function for the

reconnection session called ReconnectProcess(). This

function tries to connect to the server until it

reestablishes the old session.

The important variables used in the reconnection

session are the following:

"* index - The parameter acts as offset of the data

file sent so far. It is always updated implicitly

during the data transfer session. It is retrieved

automatically by the persistency API in order to

initialize the reestablished session.

"* host - The server IP address.

"* port - The communication port for the file

transfer. It is static for the TCP session but it

is dynamic for the UDP session. The Java random

function is used to generate the dynamic port

number.

"* client - The client object. ConnectionControl

needs this handle to pass control back to the

client after connection is reestablished. The

client will continue the data transfer process.

"* done - It is the logic to control the iteration

in order to make a new connection to the server.

It will be set to another value after the

physical connection is resumed.

The main function of this persistency API, function

reconnectProcess(), is being called to do the following:

* Obtain the type of underlying protocol and the

offset of the file from the client at the point

before the connection failure.

39

* Send the new requests to the server until the

physical connection is recovered.

The additional functions in this persistency API class

are supposed to support the reconnection operation. There

are composed of the following:

"* initialization() - This function initializes the

critical data members of the class

"* setIndex(int index) - This function sets the

offset value of the desired file. It is being

called during each packet transmission.

"* open() - This function is the first step after

the resumed connection. It creates the input and

output streams in order to communicate with the

server.

"* sendTCPRequest() and sendUDPRequest() - These two

functions are the final steps of the persistency

API. The details are discussed in the next

section.

2. The Use of Persistency API

When the client detects the physical connection

failure via the Exception in Java, it calls the member

function reconnectProcess() of ConnectionControl:

controlAgent.reconnectProcess(String);

The argument for this function is a string, used to

indicate the underlying protocol. It can have the value

"TCP" or "UDP", depending on the type of transfer

application that is being used. This argument is important

to determine the appropriate new request to the server. The

following is the code segment for the reconnectProcess()

function:

40

114 public void reconnectProcess(String type)

138 while (!done)

140 try {

145 socket = new Socket(host, port);

152 open();

155 client.setParameters(socket, br, bw);

157 if (type.equalsIgnoreCase("TCP"))

160 sendTCPRequest();

162 } else

164 try

167 sendUDPRequest();

169 } catch (Exception e) {}

171 } // end if - else

173 done = true; // set the exit of the loop

175 } catch (UnknownHostException uhe)

179 } catch (IOException ioe)

187 } // end try - catch

191 } //end while

193 } // end reconnectProcess()

After being called, the persistency API starts a job

by sending a series of requests to the server. If there is

no reply, the new socket, line 145, will not be created and

yields the result in exception occurrence. In Java, if

there is an exception occurrence, the appropriate catch

statement will handle this error. Since it jumps to the

catch statement, on line 179, due to the socket
41

establishment failure, it assumes no connection is resumed

and continues the iteration within the while statement,

line 138 - 191. After the connection is resumed, the

persistency API continues by opening the new stream between

the client and the server, in line 152, and then sets the

important parameters to the client object in order for the

client to continue the data transfer after the reconnection

completes. Next, based on the argument passed in the

function, a corresponding request, in line 160 or 167, is

sent to the server. After sending a request to get a

partial file from the server (the appropriate offset has to

be sent), this persistency API returns to the client. The

client will continue retrieving the partial date at the

point it lost the connection.

For clarification, after establishing a new connection

with the server (below line 145) , the further process in

which the API supports the recovery of the file transfer

can be categorized into two groups as follows:

a. Using Persistency API for TCP

After the new connection is established, the

persistency API is trying to make a request to get the

partial file. Therefore, there are two types of

applications. In this case, the text file is being

retrieved. From the code segment shown earlier, if the main

function of the persistency API, reconnectProcess(,

receives "TCP" as argument, it will force the 'if'

statement to call sendTCPRequest(), on line 160, to get the

text file and the file transfer session will be continued

right after this command. The following is the pseudo code

used for sending the new TCP request to the server:

238 private void sendTCPRequest()

42

240 String textOut = "/get + index;

247 client.send(textOut);

249 } // end sendRequest()

The parameter 'index' is already updated so this

function will use it automatically. It is an offset of the

desired file where the server should start the transfer in

the reestablished connection. The function sendTCPRequest()

uses the client's existing function to send the request

after establishing the new connection with the server in

order to have the client continue the file-retrieve job

after the control is returned to the client. For the TCP

case, API returns to the client immediately after sending

the new request. It assumes that the time of returning to

the client is faster than the period of the request, which

is sent to the client combined with the period packets that

travel from the server to the client. The service continues

from the point it returns and the client continues to

receive the rest of the file.

b. Using Persistency API for UDP

For the case that reconnectProcess() function

gets "UDP" as an argument from the client, the 'if'

statement of line 157 will evaluate the logic to false and

sendUDPRequest() on line 167 will be called.

sendUDPRequest() is the function needed to send the new

request for UDP session. The following is the code segment

used for sending the new UDP request to the server:

256 private void sendUDPRequest() throws Exception

262 int newRTPPort = client.randomRTPPort(;

43

267 RTPsocket = new DatagramSocket(newRTPPort);

269 client.setRTPSocket(RTPsocket);

270 client.setRandomRTPPort(newRTPPort);

273 client.send("/Setup " + index + ... +

newRTPPort);

274 client.sendRTSPrequest("PLAY");

278 client.timer.start(); // continue the timer

after sending the new request

282 } // end sendUDPRequest()

Line 262 generates a new RTP port for receiving

the partial video file from the server. In order to avoid

the packets from different sessions colliding at the same

port, a random function is used to generate a new port

number. The new RTP socket using the new RTP port needs to

be assigned to the client object in order to achieve

service continuity because the control will return to the

client object after a new connection to the server is

established.

The parameter 'index' is also an offset of the

desired file and already updated. Java timer class, which

is used control the file transfer of the video packets, is

stopped when the connection failure occurred. Thus, this

function needs to be reactivated after the connection is

resumed for the next video packets transfer session. As a

result, it has to be called again after the connection is

resumed. After the new request from the API has been sent,

the API returns the functionality back to the client by

using the start() method, line 278 of ReconnectProcess(),
44

in which the Java timer is reactivated. The service

continues from the point it returns and the client

continues to receive the rest of the file.

C. APPLICATION USAGE GUIDE

1. Client

The client starts the application by waiting for

actions from the user. The user must select one of the

options from the drop down menu as shown in Figure 15.

I fiE
ands atthe command bar

Figure 15. Client's selection panel

After the button connect is pressed after choosing the

selection, the client program automatically connects to the

server. The client first sends the file size request. After

getting the file size, another panel will show up and wait

for the user's next actions to retrieve the file.

After the user presses the "Get Data" button for TCP

connection or the "Play" button for UDP connection, the

45

client starts to receive the file packets from the server

and displays the content on the panel until the end of the

file. Figures 16 and 17 show the preview of the second

panel for TCP and UDP respectively.

Giet Data Close

Figure 16. Client's second panel for TCP session

46

Clen blip -Prcs

Pause Close VIDO

Figure 17. Client's second panel for UDP session

The following figures show the second panels while

retrieving the data from the server.

U

-- Verbose logging started: 9f2212004 10:29:07 Build type: SHIFa
UNICODE 2.00.2600.1106 Calling process: C:WVINDOWSISyster
32ýmsiexec.exe==
MSI (c) (64:FO): Resetting cached policyvalues
MSI (c) (64:FO): Machine policyvalue 'Debug' is 0
MSI (c) (64:FO): - RunEngine:

- Product: C:WINDOWS\Downloaded Installations\DAE
MON Tools 3.472daemon.msi

t Action:
SCommandLine:

MSI (c) (64:FO): Machine policy value 'DisableUserlnstalls' is 0
MSI (c) (64:FO): SOFTWARE RESTRICTION POLICY: Verifying pack
age -- > 'C:%WINDOWS\Downloaded Installations0DAEMON Tools 3
47Wdaemon.msi' against soltware restriction policy
MSI (c) (64:F0): Note: 1: 2262 2: ODigitalSignature 3:-2147287038

MSI (c) (64:FO): SOFTWARE RESTRICTION POLICY C:IWINDOVVS
Downloaded Installations0DAEMON Tools 3.47fdaemon.msi is no

et Data: Close

Figure 18. Client's second panel during TCP transmission

47

C ient UD rcs

Play PaElClse VDO

Figure 19. Client's second panel during UDP transmission

If any connection failure occurs, the second panels

will be paused automatically and the reconnection process

is undertaken without any user interaction. When the

connection is reestablished, this panel resumes showing the

content of the file from the point it paused.

2. Server

The server starts the application by waiting for the

client to connect to it. After establishing the connection,

a server thread is created to handle the transfer session

with the client. The main server process, in the mean time,

can accept other client connections (maximum number of

clients is 30) . The following figures indicate the server

process:

48

.New Connection is established!

Figure 20. Information message from the server

M r s

Server is waiting for a client to establish the connection...

Server accepted
Thread #1 created!

Server is waiting for a clientto establish the connection...

Exit

Figure 21. The server process

After being connected, another information panel is

popped up in order to show the process of the transmission.

These panels are displayed and updated throughout the

process until the end of the file. The following figures

show the transmission process using TCP and UDP as an

underlying protocol respectively:

49

Character # 5671 ,s is senit

Figure 22. The server's transmission process for TCP session

Senid frame # 24

Figure 23. The server's transmission process for UDP session

50

V. TESTING

This chapter describes the testing of the data

transfer application developed, including the test network

description, the various scenarios that were used, and the

general results of the testing.

A. TESTING NETWORK DESCRIPTION

The testing of the API support application required

the installation of a basic network that simulates several

scenarios in which all the application components'

operations can be tested.

1. Practical Considerations and Limitations

"* Home-based wired networking was used for data

transmission between end users to simulate a small

network scenario.

"* Both wired and wireless network at the Naval

Postgraduate School (NPS) were used to simulate the

Internet network environment.

"* During the test, the IP address of the server was

assumed to be static.

"* A sufficient number of wired clients and wireless

enabled devices were used to test the requirements

of the thesis research. It is not our goal to test

the volume of client traffic that the application

can handle.

"* In most of the testing scenarios, the additional

"delay" during transmission is added to reduce the

speed of the file transfer and the reconnection

process. That means the server's and client's

program response was slowed by the use of a "delay"

51

function so that it is easier for the user to

observe the communication protocol features and

behavior during the test scenarios.

0 The connectivity failures necessary to test the

protocol responses were manually caused by either

unplugging the network connection in the wired

devices (mainly servers), or by disabling or

removing the wireless adapters from the wireless

enabled client devices.

2. Testing Network

As Figure 24 shows, for the small network scenario,

the testing network consists of a server, a client and a

switch connecting directly for a wired environment. For a

wireless environment, they are connected via wireless

adaptors through a router that also connects to the

Internet. The server in both the wired and wireless setup

has the static IP address.

Client Server

WirelessRouter

CInternet)

Figure 24. The home-based networking architecture

52

For the simulated WAN network, the client is

connecting to the server using wired connection via a

switch, and wireless connection via a wireless router. As

shown in Figure 25, the client is connected to the server

via the NPS network for both wired and wireless WAN

testing.

Switch NPS Network

L -J -- _ Server

Client WirelessRouter

Figure 25. The NPS-based WAN network setup

B. TESTING SCENARIOS

Several tests were developed to emulate the various

problems that might be encountered while running the

application. These scenarios are used to ensure that the

goals of the thesis research were fulfilled. The following

descriptions list all the testing scenarios and associate

them with a reference code so that they can be referred

later in the result description without naming them

explicitly. The reference codes start with a group of

letters that indicates the general scenario type and ends

with a counter number. The reference code part that refers

to the scenario's type is one of the following:

"* SUIS : Server User Interface Scenario. Situations that

can happen during the interaction of the server's user

with the available user interface.

"* CUIS : Client User Interface Scenario. Situations that

can happen during the interaction of the client's user

with the available user interface.

53

* APIS : API Scenario. Situations that API does during

the establishment of the new connection for the client

to the server.

1. Scenario Reference Code and Scenario's
Description

SUIS-1 The server accepts the connection and waits

for the request from the client.

SUIS-2 The server sends the data packets in a TCP

session.

SUIS-3 The server sends the video packets in a UDP

session.

SUIS-4 The server accepts the new connection and

disregards the previous connection.

CUIS-1 Failure in the type of protocol selection

when it is necessary to select the protocol

used for transfer.

CUIS-2 Starting download in a TCP session.

CUIS-3 Starting download in a UDP session.

CUIS-4 Detecting a physical connection lost while

downloading the packets from the server.

APIS-I During the file transfer, the connection is

lost but is restored again after a short

period of time. The ConnectionControl object

performs the task instead of the client.

CUIS-5 Display confirmation to the user before

closing the current session.

C. TESTING RESULTS

This section explains how the network components

responded to each of the scenarios and how the user

interface helped the user to be informed if a file transfer

54

failed during its operation. The reference codes listed in

Section A are used to refer to each scenario.

* SUIS-1. The server accepts the connection and waits

for the request from the client. The result was that

the program informed the user via a message as

follows:

*New connection is established!

Figure 26. The server establishes the connection

Server is waiting for a clientto establish the connection...

Server accepted
Thread #1 created!

Server is waiting for a clientto establish the connection...

Character # 8736 , A is sent

Figure 27. The server is ready for the TCP file transfer

55

Server is waiting for a client to establish the connection...

Server accepted
Thread #1 created!

Server is waiting for a client to establish the connection...

Send frame #

Exit

Figure 28. The server is ready for the UDP file transfer

* SUIS-2. A panel displaying the text sent informs the

user of the progress for a TCP session.

Character # 8736 , A is sent

Figure 29. The proxy server process for a TCP session

* SUIS-3. A panel displaying the frame number sent

informs the user of the progress for a UDP session.

I.
7 Send framie # 19

Figure 30. The proxy server process for UDP session

* SUIS-4. This is the result from a lost connection. The

server accepts the new connection and disregards the

previous connection. The new thread is created to

handle the new communication.

56

Server is waiting for a client to establish the connection...

Server accepted
Thread #1 created!

Server is waiting for a client to establish the connection...
S// •e rver accepted

Thread# 1 removed!

•tServer is wiigfrac ntoestablish the connection...

Figure 31. The server process after new connection

* CUIS-I The client user needs to select the type of

protocol to be transferred in order to avoid an error.

The panel in Figure 32 appears if the user tries to
connect before selecting the type of protocol.

Figure 32. The response of client side for CUIS-I

* CUIS-2. A window displays the content that the client

received during a TOP session (as shown in Figure 18
in chapter 4 section B.2.a)

* CUIS-3. A window displays the video content that the

client received during a UDP session (as shown in
Figure 19 in chapter 4 section B.2.a)

57

* CUIS-4. When connection failure is detected, a GUI is

displayed to alert the user, and user action is needed

for the client to begin the reconnection process. The

following figures show the sequence of panels

displayed to the users at the client side:

S The Coritectioll has lost, erroit] nthe uirlderlyngl protoCol

Figure 33. The information message of the client (1)

OThe tiexct job is to reest~alsh the sessioti

Figure 34. The information message of the client (2)

58

Fie Edst Search View Project Run Team Vrzaros Tools Wcnow Help

r + RCD.jpo X- Cliernt Xj CconnectionCortrol I XI| • HTPpacketI X S Xere SereerThreac V ldeoSl.rea.

RCD c 1-±
1 a oproject Sou ce I- -

El Stýenard Doolet 4 public Vodeo crec (String tclensoce) ti•iaEi]'xceptoon{

.3 jinit variables
.t. Coooectionortootcjaca Et e tenuttemftneei~p~e?•_oj fi •+ n- F, ile•npur lfI)

38 fraoe 1 - b = 0;

.. VioeoStream 40 end conetcuctoj
VideoStrearr(Strn9 filenarre) 41

. '" " 4 g e tr e x t f ra rr e (b y t e [] f r a m e) 4 2 - -
S ri43 Get the next fraoe: 4raie nb1+

I,- sb 45 - Opcaba fcaie accay of byte of the video

4o

VideoStreal, oava Inerl 69:1 -I CUA - -

Not Rcn packet ith o eS. ho 1 o TSitcco to c1ne to6 t.e -Occec.
Goot RT packet, o ith SeqNc e 32 T1 me1tcmp 3200 ts, oot to pe
ntier Ionte ed outSeq n-- -

fal

no to est -i D•ucring.. the fl tasr tecnto i

lo emcterste. but-I "risg rc oesc to tesraed agi.atr..hrt prid o

In exto riesme. The clien a m to re te server

1 Ztonnr-d fil downloa prgrss stp updtin unti the

No connectlion re net r connects to the s v and to the r rvev

o o fne theo resme.St11 rilt ct tof the filer . .. Fgr.6 sow h tep

N o fn tho rs e API programyin to connec t to the server as.wll.a
N oncth nred pa se s,1 rigt onctatote ofv th.se.nt r ac.ur n

No connection resmed. Stll tlyFng to co3aenct to the servet
wo conhec eon restmed. Still tryng to connect to the s erier

mroessae shwnihaihnrcesi otiudfo

,j-

Figure 35. The persistency API's reconnection process

t APIS-i During the file transfer, the connection is

lost but is restored again after a short period of
time. The client attempts to reconnect to the server

by calling the persistency API. The image progress

panel of the user interface, which displays the image

or file download progress, stops updating until the

client reconnects to the server and begins retrieval

of the rest of the file. Figure 36 shows the attempt

of the API program to connect to the server as well as

the paused state of the user interface during

connection failure. Figures 37 and 38 show the message

when the connection is resumed, followed by the

messages showing that the process is continued from

the point where the connection was lost.

59

== Verbose logging started: 912212004 10:29:07 Build type: SHIF
UNICODE 2.00.2600.1106 Calling process: C:%WINDOWS\Syster
32\msiexec.exe ===
.MSI (c) (64:F0): Resetting cached policy values
MSI (c) (64:F0): Machine policy value 'Debug' is 0
M SI (c) (64:F0): ******* RunEngine:

"*ý**f* Product: C:\WINDOWS\Downloaded Installations\DAE
MON Tools 3.47\daemon.msi

****Action:
CommandLine: ----------

MSI (c) (64:F0): Machine policy value 'DisableUserlnstalls' is 0
MSI (c) (64:F0): SOFTWARE RESTRICTION POLICY: Verifying pack
age--> 'C:%WINDOWS\Downloaded Installations0DAEMON Tools 3
47\daemon.msi' against software restriction policy
MSI (c) (64:F0): Note: 1: 2262 2: 01 DigitalSignature 3: -21 47287038

MSI (c) (64:F0): SOFTWARE RESTRICTION POLICY: C:IWINDOWS
Downloaded Installations\DAEMON Tools 3.47\daemon.msi is no

Close

Figure 36. The client's user interface during connection
failure

SConnection rwsumnedfl!

~II f

Figure 37. The message from API showing the status (1)

h.T e transmission isfom ntinum I fromngt poi it lost!

Figure 38. The message from API showing the status (2)

60

* CUIS-5 There are two panels at the client side running

at the same time: the client's control panel (Figure

16) and the client process panel (Figure 18 for TCP or

Figure 19 for UDP) . Both panels are waiting for the

action from the user. While the client process is idle

or still running, if the user wants to quit at any

time, the application will ask for confirmation before

leaving the application. The action from pressing the

"close" button from one of the client's panels will

yield the result shown in Figure 39.

Do you re~allyvwant to closei

Figure 39. The final confirmation message

61

THIS PAGE INTENTIONALLY LEFT BLANK

62

VI. CONCLUSION AND FUTURE WORKS

A. SUMMARY

The goal of this thesis research was to design an API

to support persistent session services to various

applications using TCP or UDP as an underlying protocol,

and to implement an application that uses and demonstrates

the operation the persistent session service. Other

proposed file transfer protocols for service continuity

were examined to study their characteristics and features

used to recover from a connection failure.

The communication program implemented is a client-

server application that supports multithreading on the

server side and can dynamically recover from data transfer

failure due to intermittent physical connection loss. This

file recovery feature is achieved by designing and

implementing the API at the client side. The

ConnectionControl object, when called by the client

application, tries repeatedly to connect to the server and

resume the data transfer session from the point where

connection failure occurs.

The application was designed with user interfaces that

make the dynamic partial file retrieval visible to the user

in real time. Special user interface panels are created to

show the file transfer progress and display the data

received.

The main scenario tested during the communication

application testing was when the connection failed during

the file transfer and the client program successfully

reconnected when the physical connection was restored. Our

test also validated the file management and the

63

multithreaded behavior at the server side. Both wired and

wireless network environments were used in testing at the

client side. Users at the client side were able to

visualize the file transfer progress and control the file

transfer options (request file, stop downloading, or choose

to continue previous failed file transfers).

B. FUTURE WORK

Extending the research scope of this thesis and the

application developed in support of it, there are issues

that raise opportunities for further research. They

include:

1. Communication Protocol Design

Based on the APIs developed in this thesis for

specific applications, further research could be focused on

enhancing the API to have more capability. Some key areas

towards this direction could be:

"* Support a fully mobile networking environment.

Further enhancement in the API can be supported for

portable devices with respect to data session

survivability in a wireless environment. The API may

have more capability but should be small enough to

be more suitable for mobile device.

"* Support for migration of UDP sessions. As discussed

in Chapter II, migration in TCP has been studied.

Further research can be done on enhancing the

service continuity for both kinds of protocol.

"* Lower level API. The API may be written using the

concept developed in this thesis but implemented at

the lower level of the network stack to achieve

better performance.

64

2. Application Development

In application-level development, the following

further work can be done:

"* Extending the persistency API class library. Create

a class or additional API library for the persistent

connection protocol that application developers can

use to develop new applications. This proposed API

should be able to support generic applications at

the application layer, e.g., it supports all

applications using either TCP or UDP as the

underlying protocol.

"* Developing additional applications that use

persistent data sessions. Examine other types of

applications where applying the persistent data

sessions can be useful.

65

THIS PAGE INTENTIONALLY LEFT BLANK

66

APPENDIX A. CLASS SOURCE CODE

"* Title: API Development for Persistent Data Sessions

Support
"* Description: Application client

"* Compiler : JBuilder 9

"* Author CPT.Chayutra Pailom THA

"* Date : January 20, 2005

import java.io./
import java.net.*;

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

import javax.swing. Timer;

"* This is part of the connection process which is connect

to the server.

"* This client is intended to connect and receive the data

from the server
"* using two different protocols; TCP and UDP. This class

is intended to

"* use socket programming for both types of protocols and

graphic user
"* interface on order to interact with the user.

* Expected server protocol support: Both TCP and UDP

applications

* @author CPT Chayutra Pailom THA

public class Client extends JFrame implements Runnable

//--
//

// Data Members:
//

//--

//---- Global variables for TCP or UDP process ---- /

/** Runnable TCP or UDP object */

private Thread TCPThread, UDPThread;

67

/** The physical connection control process */

private ConnectionControl controlAgent;

/** Socket for TCP and RTSP request */

private Socket socket;

/** The buffer for input stream */

private BufferedReader br;

/** The buffer for output stream */

private BufferedWriter bw;

/** The IP address of the server

private String host;

/** Port to communicate with the server

private int port;

/** Logic to control the redundant data manipulation */

private boolean knowSize;

/** Logic for doing TCP or UDP process */

private int connectionCase;

/** The critical variable for reconnect process for

both TCP and UDP */
private int index;

/** Connection status */

private boolean connect;

//------------- GUI for TCP --------------

/** JFrame for TCP process */

private JFrame k;

/** Container to be added onto main frame */

private Container container;

/** The status bar showing how far of TCP process */

private JProgressBar progressBar;

/** The area to show the process and the TCP data */

public JTextArea textArea, textArea2;

68

/** The button to shutdown the visibility of the GUI */
private JButton buttonClose, buttonClose3;

/** The button to start retriving the data from the

server */
public JButton buttonConnect, buttonData;

/** The panels for containing small functions of GUI */
private JPanel TCPPanel, buttonPanel, buttonPanel3,

textPanel, textPanel2;

/** The container for menu commands */

private JMenuBar menubar;

/** The container for menu items */

private JMenu menuCommand;

/** The function for scrolling the text area
private JScrollPane scrollPane, scrollPane2;

/** The items to be chosen for data manipulation */

private JMenuItem size, filePersistent,filePersistent2;

//------------ GUI for UDP----------------

/** The main frame of the UDP process */

private JFrame f;

/** The button to shutdown the visibility of the GUI

for UDP */
private JButton buttonClose2;

/** The button to setup and start the video process */

private JButton playButton;

/** The button to pause the video process */

private JButton pauseButton;

/** The panel for containing the small functions for

UDP GUI */
private JPanel mainPanel;

/** The panel contained functional video commands */

private JPanel buttonPanel2;

/** The label for the video */

private JLabel iconLabel;

69

/** The video to be shown */

private ImageIcon icon;

//--------------- TCP Variables ------------------ /

/** Size of the desired data used for progress bar */
private int fileSize;

/** The timeout constant for socket */

private final int SOCKETTIMEOUT = 5000;

//-------------- RTSP variables -----------------/

/** Boolean stand for the state */

private boolean ready;

/** Sequence number of RTSP messages within session */
private static int RTSPSeqNb = 0;

/** End of command */

private final static String CRLF = "\r\n";

//-------------- Video constants ----------------- /

/** RTP payload type for MJPEG video */

private static int MJPEG TYPE = 26;

//--------------- RTP variables -----------------/

/** UDP packet received from the server
private DatagramPacket rcvdp;

/** socket to be used to send/receive UDP packets */
private DatagramSocket RTPsocket;

/** port where client will receive the RTP packets */
private static int RTPRCVPORT = 9999;

new port where the client will receive the RTP

packets */
private int newRTPPort;

/** timer used to receive data from the UDP socket */

Timer timer;

70

/** buffer used to store data received from server

byte[] buf;

/ ---//

// Constructor:
//

/ ---

* Default constructor

* @param pHost - IP address of the server
* @param no - port number of the server to be

connected

public Client(String pHost, int no)

// Variables initialization
host = pHost;

port = no;
knowSize = false;

connectionCase = 0;
connect = false;

/** Initialize the control process object.
* must call in order to avoid incomplete physical

connection */
fileControl(this, port, host);

//--------- Client GUI Process------------

// Main frame attributes
container = getContentPane();
container.setLayout(new BorderLayout());
this. setTitle ("Client");
this.setSize(400, 400);
this.setLocation(500, 0);

// buttons,labels and panels
buttonClose = new JButton("Close");
buttonConnect = new JButton("Connect");
buttonPanel = new JPanel();
textPanel = new JPanel();
buttonPanel.add(buttonClose);
buttonPanel.add(buttonConnect);

71

// menu items for the client commands
size = new JMenuItem("Get Size");
filePersistent = new JMenuItem("Get File TCP

PERSISTENT");
filePersistent2 = new JMenuItem("Get File UDP

PERSISTENT");

// menu for the items to be added
menubar = new JMenuBar();
menuCommand = new JMenu("Command");
menuCommand.add(size);
menuCommand.add(filePersistent);
menuCommand.add(filePersistent2);
menubar.add(menuCommand);

this.setJMenuBar(menubar);

// Initialize handlers
ButtonHandler buttonHandler = new ButtonHandler(;
MenuHandler menuHandler = new MenuHandler(;

// action listeners for buttons
buttonClose.addActionListener(buttonHandler);
buttonConnect.addActionListener(buttonHandler);

// action listeners for menu commands
size.addActionListener(menuHandler);
filePersistent.addActionListener(menuHandler);
filePersistent2.addActionListener(menuHandler);

// text components
textArea = new JTextArea(;
textArea.setLineWrap(true);
textArea.setEditable(false);
scrollPane = new JScrollPane(textArea);;

// border layout placements
textPanel.setLayout(new BorderLayout());
textPanel.add(scrollPane, "Center");
container.add(textPanel, "Center");
container.add(buttonPanel, "South");

setVisible(true); // set the visibility of the main
GUI

textArea.append("Client is ready\n");
textArea.append("Please choose one of the commands

at the command bar\n");

72

//------------- TCP GUI Process -----------

// frame for TCP GUI
k = new JFrame("Client TCP Process");

// add frame window attribute
k.addWindowListener(new WindowAdaptero()

public void windowClosing(WindowEvent e)
System.exit (0);

}) ;

// TCP process frame attributes
k.setTitle ("Client");
k.setSize(400, 400);
k.setLocation(0, 0);

// buttons and panels
TCPPanel = new JPanel();

buttonPanel3 = new JPanel();
textPanel2 = new JPanel();
buttonData = new JButton("Get Data");
buttonClose3 = new JButton("Close");

// action listeners for buttons
buttonClose3 addActionListener (buttonHandler);
buttonData. addActionListener (buttonHandler);

// text components
textArea2 = new JTextArea(;
textArea2 setLineWrap (true);
textArea2 setEditable (false);
scrollPane2 = new JScrollPane(textArea2);
progressBar = new JProgressBar(;

// Add buttons into button panel
buttonPanel3.setLayout (new GridLayout (1, 0));
buttonPanel3 add (buttonData);
buttonPanel3 add (buttonClose3);

// border layout placements
textPanel2.setLayout (new BorderLayout ());
textPanel2.add(scrollPane2, "Center");
textPanel2.add(progressBar, "South");
TCPPanel. setLayout (null);
TCPPanel.add(textPanel2, "Center");

73

TCPPanel.add(buttonPanel3, "South");

// panel attributes
textPanel2.setBounds(0, 0, 380, 315);
buttonPanel3.setBounds(0, 310, 380, 50);

// Add TCP main panel into JFrame
k.getContentPane () .add(TCPPanel,

BorderLayout. CENTER);

//------------- UDP GUI Process --------------- /

// frame for UDP GUI
f = new JFrame("Client UDP Process");

// add frame window attribute
f.addWindowListener(new WindowAdaptero()

public void windowClosing(WindowEvent e)
System.exit (0);

}) ;

// buttons and panel initialization
playButton = new JButton("Play");
pauseButton = new JButton("Pause");
buttonClose2 = new JButton("Close VDO");
mainPanel = new JPanel();

buttonPanel2 = new JPanel();

// Add buttons into button panel
buttonPanel2.setLayout (new GridLayout (1, 0));
buttonPanel2 add (playButton);
buttonPanel2 add (pauseButton);
buttonPanel2 add (buttonClose2);

// Add action listener for each button
playButton addActionListener (new

playButtonListener()); // create object play
pauseButton addActionListener (new

pauseButtonListener()),// create object teardown
buttonClose2 addActionListener (buttonHandler);

// Image display label
iconLabel = new JLabel();
iconLabel setIcon (null);

74

// frame layout
mainPanel.setLayout(null);

mainPanel.add(iconLabel);
mainPanel.add(buttonPanel2);

// Set boundary
iconLabel.setBounds(0, 0, 380, 315);
buttonPanel2.setBounds(0, 310, 380, 50);

// Add main panel into JFrame
f.getContentPane() .add(mainPanel,

BorderLayout.CENTER);

f.setSize(new Dimension(390, 400));

// init timer for video
timer = new Timer(20, new timerListener()); //

create object timer
timer.setInitialDelay(0);
timer.setCoalesce(true);

//allocate enough memory for the buffer used to
receive data from the server

buf = new byte[15000];

// end constructor

/ ---
//
// Public Methods:
//
/ ---

"* Runs a thread, it has to be run as a thread in order

to achieve the GUI.
"* There are two types of the protocols; TCP and UDP,

depending on the
"* connectionCase. When a physical lost occurs, in

order to achieve
"* the persistent data sessions, the client will ask

the server to send
"* data again by using the previous parameters. It

seems to be non-persistent
"* due to the new establishment of the connection but

the idea of persistent
"* connection will be used instead.

75

public void run()

if (connectionCase == 1)

TCPStart ;

else

UDPStart ;

I // end run(

* Method to close all socket variables

public void close()

try {

if (br != null) {
br.close() ;

I // end if

if (bw != null) {
bw.close();

I // end if

if (socket != null)
socket.close();

I // end if

I catch (java.io.IOException io)

JOptionPane.showMessageDialog(this, "Input /
Output error occured, you should restart",
"Socket closed error",
JOptionPane. INFORMATION MESSAGE);

// end try - catch

// end close()

* Method to open all socket variables

* @return boolean true if the connection can be

established otherwise false

76

public boolean open()

try {

System.out.println("Trying to connect to the
server);
use for both TCP request and RTSP request
(for later UDP)

* automatically connect to the host(server) */

socket = new Socket(host, port); // ==>
System.out.println("After create socket,

connection ==> " + socket.isConnected());

connect = true;

// initialize buffer for both input and output
streams, use socket for initialization

br = new BufferedReader(new
InputStreamReader(socket.getInputStream());

bw = new BufferedWriter(new
OutputStreamWriter(socket.getOutputStream()));

catch (UnknownHostException uhe) {

JOptionPane.showMessageDialog(this, "Unknown
server, check the address");

return false;

catch (IOException ioe)

JOptionPane.showMessageDialog(this, "Cannot
connect to the server, server may be down or
cable unplugged.", "Socket Error!",
JOptionPane. INFORMATION MESSAGE);

return false;

// end try - catch

return true; // if success

// end open()

* Method to send the message to the server

* @param message - the string request

77

public void send(String message)

try {

// write the message to the server using buffer
writer

bw.write(message);
bw.newLine();
bw.flush();

I catch (SocketException se)

// true if the socket successfully connected to
the server

if (socket.isConnected())
JOptionPane.showMessageDialog(this, "The

connection still established!");
I else {

JOptionPane.showMessageDialog(this, "Other
problems!");

// end if - else

I catch (Exception e)

JOptionPane.showMessageDialog(this,
"In send, Check if connected to server",
"Sending Error!", JOptionPane.ERROR MESSAGE);

close();

// end try - catch

// end send()

* Method to send the request to the server

* @param requesttype - the UDP request

public void sendRTSPrequest(String requesttype)

try {

// write the message to the server using buffer
writer

78

bw.write(requesttype + " Cseq: + RTSPSeqNb +
CRLF);

bw.flush() ;

I catch (Exception ex)

System.out.println("in send Exception caught:
+ ex);

System.exit(0);

// end try - catch

// end sendRTSPrequest()

* Method to set the parameters after getting new

connection

* @param socket - the TCP or RTSP communication socket
* @param br - buffer for input stream
* @param bw - buffer for output stream

public void setParameters(Socket socket, BufferedReader
br, BufferedWriter bw)

this.socket = socket;

this.br = br;
this.bw = bw;

// end setParameters

* Method to retrieve the variable host

* @return host - the IP address of the host

public String getHost()

return host;

I // end getHost(

* Method to retrieve the constant RTPRCVPORT

* @return RTP RCV PORT - the RTP destination port

79

public int getUDPPort()

return (RTPRCVPORT);

I // end getUDPPort()

* Method to get the random RTP port

* @return - random RTP port number

public int randomRTPPort()

return ((int) (Math.random() * 10000));

I // end randomRTPPort()

* Method to set the random RTP port

* @param newPort new RTP port numner

public void setRandomRTPPort(int newPort)

newRTPPort = newPort;

I // end setRandomRTPPort()

* Method to get the random RTP port

* @param RTPsocket - new RTP socket

public void setRTPSocket(DatagramSocket RTPsocket)

this.RTPsocket = RTPsocket;
System.out.println("New RTP socket set!");

I // end setRTPSocket()

/ ---
//
// Private Methods
//

/--

80

"* Connect to the server either TCP or UDP
"* This client will not be terminated unless
"* the appropriate button will be pressed.

* Five steps to communicate with the client are
* Step 1 - Set up a client socket to send request

to the server
* Step 2 - Set up the control agent
* Step 3 - Open appropriate streams for desired

data exchange
* Step 4 - Communicate with the server via streams
* Step 5 - Close the opened socketconnection

* Persistent TCP connection

private void TCPStart()

// variable initialization
index = 0;

String text =

boolean done = false;

if ((knowSize == false) && (connect == false))

open(); // open the port for the TCP
connection

textArea.append("Connected\n");

// get the size of the data in order to
manipulate the progress bar

fileSize = findSize(;

I // end if

while (!done)

System.out.println("In while loop");
String textOut = "/get " + index;

System.out.println("Command -- > " +

textOut);

System.out.println("Request to server
sent!");

81

send(textOut); // send the request to the
server

int spaceCounter = 0;
char[] testChar = new char[4];

// receive the content of the file until EOF
while (!socket.isClosed())

try {

try

socket.setSoTimeout(SOCKET TIMEOUT
); // set timeout for the TCP
socket

I catch (SocketException se)

JOptionPane.showMessageDialog(this,
"The connection has lost, error
in the underlying protocol",
"Timeout!",

JOptionPane.ERRORMESSAGE);

JOptionPane.showMessageDialog(this,
"The next job is to reestalish
the session", "Next Process",

JOptionPane. INFORMATIONMESSAGE);

close(; // close all sockets
before doing reconnection

// if the connection is lost by
timeout, it will reconnect
automatically

controlAgent.reconnectProcess("TCP");

I // end try - catch

text = br.readLine(); // read the
incoming response from the server

System.out.println("Received ==> " +
text + " , index = " + index);

82

// very important for retrieving the
rest of the data

controlAgent.setIndex(index);

if (text.equalsIgnoreCase(""))

System.out.println("spaceCounter =
" + spaceCounter);

spaceCounter++;

if (spaceCounter == 3)

textArea2.append("\n");
spaceCounter = 0;

// end if

else{

textArea2.append(text);
spaceCounter = 0;

// end if - else

if (text != null)

index++; // increment the
counter

progressBar.setValue(index); //
set the progress bar

// End of file
if ((index) == fileSize)

textArea2.append("\n");

JOptionPane.showMessageDialog
(this, "End of File!");

done = true; // set the logic
to exit the outer loop

break; // exit the inner loop

// end if

// end if

83

catch (NoRouteToHostException nrth) {

JOptionPane.showMessageDialog(this,
"The route to host!");

JOptionPane.showMessageDialog(this,
"The next job is to reestalish
the session");

catch (ConnectException ce)

JOptionPane.showMessageDialog(this,
"The connection was refused
remotely");

JOptionPane.showMessageDialog(this,
"The next job is to reestalish
the session");

catch (SocketException se)

System.out.println("The error is
===> " + se.getMessage());

close); // close the socket and I/O
streams to quit inner loop

JOptionPane.showMessageDialog(this,
"The connection has lost, error
in the underlying protocol",
"Socket closed!",
JOptionPane.ERRORMESSAGE);

JOptionPane.showMessageDialog(this,
"The next job is to reestalish
the session", "Next Process",

JOptionPane. INFORMATIONMESSAGE);

"* After the physical connection is

lost,
"* the client socket will be closed

and the agent
"* is trying to establish the new

commnication

* <p>

* Five steps to communicate with

the client are
* Step 1 - Close the opened

socket

84

Step 2 - Call agent to do the

reconnect process
Step 3 - Do the iteration until

the connection is resumed
Step 4 - Continue communicate

with the server via streams
Step 5 - Get the rest of the
data until the end of the file

// type of protocol should be passed
controlAgent.reconnectProcess("TCP");

I catch (IOException io)

// end try - catch

// end inner while

// end outer while

textArea.append("\n");

textArea.append(String.valueOf(socket.isClosed()

JOptionPane.showMessageDialog(this, "End of
File!");

I // end TCPStart()

* Persistent UDP connection

private void UDPStart()

System.out.println("Random port = " +
randomRTPPort());

try {

if ((knowSize == false) && (connect

false))

open();
textArea.append("Connected\n");
fileSize = findSize();

85

// end if

/** construct a new DatagramSocket to

receive RTP packets
* from the server, on port RTPRCV PORT */

RTPsocket = new
DatagramSocket(RTPRCVPORT);

I catch (SocketException se)

timer.stop();

System.out.println("Socket exception: " +
se);

JOptionPane.showMessageDialog(this, "The
connection has lost, error in the
underlying protocol");

// end try - catch

ready = setupUDPSession();

// add text onto the GUI panel
textArea.append("\n");
textArea.append("Now waiting for the action from

the user.. .\n");

// end UDPStart()

* UDP session initialization

private boolean setupUDPSession()

//init RTSP sequence number
RTSPSeqNb = 1;

/** Send SETUP message to the server to start the

video then wait for listener for the next
action */

send("/Setup " + RTSPSeqNb + ".".+ RTP RCV PORT);

return true;

I // end setupUDPSession()

86

* Method to control the physical connection

* @param client - the string request
* @param port - port for TCP connection
* @param host - IP address of the server

private void fileControl(Client client, int port,
String host) {

controlAgent = new ConnectionControl(client,
port, host);

// end fileControl()

* Method to find the size of the file

* @return size the size of the file in bytes

private int findSize()

int size = 0;

try {

open();

String text = new String("');
send("/size");
textArea.append("Now getting the file size from

the server...");
text = br.readLine();
textArea.append(" --- > " + text + bytes\n");

if (knowSize == false) {

size = Integer.parseInt(text);
knowSize = true;

// end if

progressBar.setMaximum(size - 3);

} catch (NumberFormatException ex)
System.out.println(ex.getMessage());

I catch (IOException ioex)

87

System.out.println(ioex.getMessage());
I catch (NullPointerException ripe) {

System.out.println(npe.getMessage());
I

return size;

I // end findSize()

* Method to parse the request from the server

public void parse server response()

try {

System.out.println("in parse server response(),
waiting for response...");

textArea.append("\nin parse server response(),
waiting for response...");

//parse request line and extract the
requesttype:

String requestLine = br.readLine();

System.out.println("RTSP Client - Received from
Server:");

System.out.println("Received -- > " +

requestLine);
textArea.append("\nReceived -- > " + requestLine);

if (requestLine.equalsIgnoreCase("EOF")) {

JOptionPane.showMessageDialog(this, "End of the
video");

ready = false;

int reply = JOptionPane.showConfirmDialog(null,
"Would like to see again?" , "Ask for your
permission", JOptionPane.YES NO OPTION);

if (reply == JOptionPane.YES OPTION)

JOptionPane.showMessageDialog(this, "Please
press Play button to sees it again");

else {
JOptionPane.showMessageDialog(this, "Return

to main menu");
f.setVisible(false);

88

I // end if - else if

I catch (Exception ex)

System.out.println("Exception caught: " + ex);
System.exit (0);

// end try - catch

// end parseRTSPrequest()

/ --//

// Main Method
//

/ --

* Main method to start the client

* @param arg argument list

public static void main(String arg[])

Client client;

if (arg.length != 2)
System. out.println("Usage: java Client

<hostname> <portnumber>");
System.exit(-1);

client = new Client (arg[0 ,
Integer.parseInt (arg[l]));

// exits when the window is closed
client.addWindowListener(new WindowAdapter()

public void windowClosing(WindowEvent e) {

System.exit(-1);

// end main()

89

-------------- I N N E R C L A S S --------------

/ --
//
// Action Listener Methods:
//

/ --

private class MenuHandler implements ActionListener

public void actionPerformed(ActionEvent e)

if (e.getSource() .equals(size))

open();
fileSize = findSize();

I else if
(e.getSource() .equals(filePersistent))

connectionCase = 1;

textArea.append("\nTCP connection
selected!\n");

textArea.append(Please press connect button
to receive the data...\n")

I else if
(e.getSource() .equals(filePersistent2))

// do UDP
connectionCase = 2;
UDPThread = new Thread(Client.this);

textArea.append("\nUDP connection
selected!\n");

textArea.append("Please press connect
button to receive the data...\n");

// end if - else if

// end actionPerform()

// end class MenuHandler

90

/ -/--
// Handler for Close and Connect buttons
//--

private class ButtonHandler extends JFrame implements
ActionListener {

public void actionPerformed(ActionEvent e) {

if (e.getSource() .equals(buttonClose)) {

System.exit (0);

I else if (e.getSource() .equals(buttonClose2)){

RTSPSeqNb++;

//Send CLOSE message to the server
sendRTSPrequest("CLOSE");
textArea.append("\nClient Process Close

button pressed!\n");

timer.stop();
f.setVisible(false); // disable the

visibility of the GUI

}else if (e.getSource() .equals(buttonConnect)){

textArea.append("\nButton Connect
pressed!\n");

if (connectionCase == 0)

JOptionPane.showMessageDialog(this,
"Please choose one of the options
before hitting the connect button",
"Button Error!",

JOptionPane.ERRORMESSAGE);

I else if (connectionCase == 1) {

k.setVisible(true); // Set the JFrame
visible

findSize();

I else {

91

f.setVisible(true); // Set the JFrame
visible

findSize();

UDPThread.start();// start the UDP
persistent process

// end if - else

I else if (e.getSource() .equals(buttonClose3)){

textArea.append("\nTCP Close button
pressed!\n");

TCPThread.suspend();

int reply =
JOptionPane.showConfirmDialog(this, "Do
you really want to close?", "Ask for
confirmation",
JOptionPane.YES NO OPTION);

if (reply == JOptionPane.YESOPTION)

TCPThread. stop (;
textArea2 .setText ("");
k.setVisible(false); // disable the

visibility of the GUI

I else

TCPThread.resume();

}

I else if (e.getSource() .equals(buttonData))

textArea.append("\nNow receiving the data
from the server.. .\n");

TCPThread = new Thread(Client.this);
TCPThread.start();// start the TCP

persistent process

// end if - else if

// end actionPerform()

92

// end class ButtonHandler

//----------------------------
// Handler for Play button
//----------------------------

private class playButtonListener implements
ActionListener {

public void actionPerformed(ActionEvent e)

System.out.println("Play Button pressed
textArea.append("\n") ;
textArea.append("Play Button pressed !");
textArea.append("\n") ;

if (ready == false) {

ready = setupUDPSession(;

I // end if

//increase RTSP sequence number
RTSPSeqNb++;

//Send PLAY message to the server
sendRTSPrequest("PLAY");
textArea.append("Now receiving the video from

the server...\n");

//state = PLAYING;
System.out.println("New RTSP state:PLAYING");

//start the timer
timer.start();

// end actionPerformed()

// end inner class playButtonListener

//----------------------------
// Handler for Pause button
//----------------------------

class pauseButtonListener implements ActionListener

public void actionPerformed(ActionEvent e)

93

System.out.println("Pause Button pressed
textArea.append("\n") ;
textArea.append("Pause Button pressed
textArea.append("\n") ;

//increase RTSP sequence number
RTSPSeqNb++;

//Send TEARDOWN message to the server
sendRTSPrequest("PAUSE");
textArea.append("The video will be paused and

wait for the action...\n")

//stop the timer
timer.stop();

// end actionPerformed()

// end inner class tearButtonListener

//------------------------------------
// Handler for timer
//------------------------------------

class timerListener extends JFrame implements
ActionListener {

public void actionPerformed(ActionEvent ev)

//Construct a DatagramPacket to receive data
from the UDP socket

rcvdp = new DatagramPacket(buf, buf.length);

try {

// Set TimeOut value of the socket.
RTPsocket.setSoTimeout(SOCKETTIMEOUT);

//receive the DP from the socket:
RTPsocket.receive(rcvdp);

//create an RTPpacket object from the DP
RTPpacket rtppacket = new

RTPpacket(rcvdp.getData(),
rcvdp.getLength());

94

//print important header fields of the RTP
packet received:

System.out.println("Got RTP packet with
SeqNum # " +
rtppacket.getsequencenumber() +
TimeStamp " + rtppacket.gettimestamp()
+ " ms, of type " +
rtppacket.getpayloadtype());

index = rtppacket.getsequencenumber();
controlAgent.setIndex(index); // set the

reference of the video

//get the payload bitstream from the
RTPpacket object

int payloadlength =
rtppacket.getpayloadlength();

byte[] payload = new byte[payloadlength];

rtppacket.getpayload(payload);

//get an Image object from the payload
bitstream

Toolkit toolkit =

Toolkit.getDefaultToolkit();
Image image = toolkit.createImage(payload,

0, payloadlength);

//display the image as an ImageIcon object
icon = new ImageIcon(image);
iconLabel.setIcon(icon);

catch (InterruptedIOException iioe)

if (ready == true) {

System.out.println("In timer
InterruptIOException caught: " +
iioe.getMessage());

System.out.println("Seq num= " + index);
timer.stop();
System.out.println(timer.isRunning());

close); // close the socket and I/O
streams to quit inner loop

JOptionPane.showMessageDialog(this, "The
connection has lost, error in the

95

underlying protocol", "Socket closed!",
JOptionPane.ERROR MESSAGE);

JOptionPane.showMessageDialog(this, "The
next job is to reestalish the session",
"Next Process",
JOptionPane. INFORMATIONMESSAGE);

"* After the physical connection is lost,
"* the client socket will be closed and the

agent
"* is trying to establish the new

commnication

* <p>

* Five steps to communicate with the

client are
* Step 1 - Close the opened socket
* Step 2 - Call agent to do the

reconnect process
* Step 3 - Do the iteration until the

connection is resumed
* Step 4 - Continue communicate with the

server via streams
* Step 5 - Get the rest of the data

until the end of the file

// type of protocol should be passed on
controlAgent .reconnectProcess ("UDP");

catch (IOException ioe)
System.out.println(" in timer IOException

caught: " + ioe.getMessage());

catch (Exception e) {
System.out.println(" in timer Exception

caught: " + e.getMessage());

// end try - catch

// end actionPerformed()

// end inner class timerListener

// end class Client

96

"* Title: API Development for Persistent Data Sessions

Support
"* Description: Persistency API class
"* Compiler : JBuilder 9
"* Author CPT.Chayutra Pailom THA
"* Date : January 20, 2005

import java.io*.
import java.net.*;
import java.awt.*;
import java.util.*;
import java.awt.event.*;
import javax.swing.*;

"* This is the critical part of the project. This class is

intended to be an API
"* to reconnect and send a request instead of the real

client. It will be activated
"* after the physical connection is lost and it will try to

detect and reestablish
"* the new connection between the client and the server.

Finally if the connection
"* is resumed, it will return the parameters and the rest

of the process back to
* the real client. This class is intended to be a

universal function for the
"* reconnection. The type of protocol, 'TCP' or 'UDP', is

required to be passed
"* through this function inorder to do the different job

for sending the request.

* Expected method: reconnectProcess() - it will do the

iteration forever unless
* the physical connection is resumed

*/
*@author OPT Chayutra Pailom THA

public class ConnectionControl

97

// Data Members:

/** The client object of the project *
private Client client;

/** Socket for TCP and RTSP request *
private Socket socket;

/** Port to communicate with the server *
private int port;

/** The IP address of the server *
private String host;

/** The buffer for input stream *
private BufferedReader br;

/** The buffer for output stream *
private BufferedWriter bw;

/*The reference of the file for TCP and UDP before the
lost connection *

private int index;

/** Logic to control the iteration *
private boolean done;

/** socket to be used to send and receive UDP packets *
private static DatagramSocket RTPsocket;

// Constructor:

*Default constructor

*@param client - client object
*@param port - port number for TCP, RTSP communication
*@param host - IP address of the server

98

public ConnectionControl(Client client, int port, String
host) {

this.client = client;

this.port = port;
this.host = host;

initialization();

I // end constructor

/ ---//

// Public Methods:
//
/ ---

* Method to initialize the important parameters

public void initialization()

index = 0; //very important to retrieve the content of
the file

done = false; // variable for the iteration for doing
the new connection

I // end initializeation()

* Method to reconnect the communication between the

client and the server

* @param type - type of protocol to be passed on this

fuction

public void reconnectProcess(String type)

System.out.println("Trying to establish the
connection... ");

System.out.println("Index to read file = " + index);
client.buttonData.setText ("Pause");

"* Reconnect to the server either TCP or UDP
"* This object is trying to help the client to detect

99

"* the physical connection. If the connection is
resumed

"* it will send the request either TCP or RTSP for the
"* client and then return the value to the client. The

client
"* will continue its job until the end of the file.

* Five steps to reconnect the communication with the

server are
* Step 1 - Trying to establish the connection via

the socket
* Step 2 - If it is resumed, open appropriate

streams for desired data exchange. If it is not,
loop forever

* Step 3 - Communicate with the server via streams

by asking and sending the new request to the server
using 'index' as an offset of the retrieved file.

* Step 4 - Set the parameters back to the client
(socket, br bw)

* Step 5 - Return the process back to the client
(br.readLine()

while (!done)

try {

/** create new socket, automatically connected if

the physical
* connection resumed

socket = new Socket(host, port);
JOptionPane.showMessageDialog(client,

"Connection resumed!!!", "Client Status",
JOptionPane. INFORMATIONMESSAGE);

// if success, it will print. If not it will go
to the exception

System.out.println("After create socket,
connection ==> " + socket.isConnected());

open (;

// set the new parameters for the client
client.setParameters(socket, br, bw);

if (type.equalsIgnoreCase("TCP"))

100

System.out.println("Type = " + type);
sendTCPRequest();

I else

try

System.out.println("Type = " + type);
sendUDPRequest();

I catch (Exception e) {}

// end if - else

done = true; // set the exit of the loop

I catch (UnknownHostException uhe) {

JOptionPane.showMessageDialog(client, "Unknown
server, check the address");

I catch (IOException ioe) {

System.out.println("No connection resumed. Still
trying to connect to the server

try {

Thread.sleep(200);

I catch (Exception e) {}

// end try - catch

I //end while

// end reconnectProcess()

* Method to set the reference of the file

* @param index - the offset the file

public void setIndex(int index)

this.index = index;

I // end setIndex()

101

// // Private Methods

//
/ ---

* Method to open all socket variables

private void open()

try {

br = new BufferedReader(new
InputStreamReader(socket.getInputStream());

bw = new BufferedWriter(new
OutputStreamWriter(socket.getOutputStream()));

I catch (UnknownHostException uhe) {

JOptionPane.showMessageDialog(client, "Unknown
server, check the address");

I catch (IOException ioe) {

JOptionPane.showMessageDialog(client, "Cannot connect
to the server, server may be down");

// end try - catch

// end open()

* Method to send TCP request to the server instead of

the client

private void sendTCPRequest()

String textOut = "/get " + index;
System.out.println("Command -- > " + textOut);
JOptionPane.showMessageDialog(client, "The transmission

is continuing from the point it lost!", "Client
Status", JOptionPane.INFORMATIONMESSAGE);

client.buttonData.setText("Get Data");
client.send(textOut);

102

// end sendUDPRequest()

* Method to send UDP request to the server instead of

the client

* @throws Exception

private void sendUDPRequest() throws Exception

JOptionPane.showMessageDialog(client, "The video is
continuing from the point it lost!", "Client Status",
JOptionPane. INFORMATION MESSAGE);

int newRTPPort = client.randomRTPPort(;
System.out.println("New port = " + newRTPPort);

/** construct a new DatagramSocket to receive RTP

packets from the server, on port RTP RCV PORT */
RTPsocket = new DatagramSocket(newRTPPort);

client.setRTPSocket(RTPsocket);
client.setRandomRTPPort(newRTPPort);

// send the requests to get the video
client.send("/Setup " + index + " " + newRTPPort);

client.sendRTSPrequest("PLAY");

client.textArea.append("\nSetup and Play requests
sent!\n");

client.timer.start(; // continue the timer after
sending the new request

client.parse server response();

I // end sendRequest()

// end class ConnectionControl

103

"* Title: API Development for Persistent Data Sessions

Support
"* Description: RTP packets for video file transfer
"* Compiler : JBuilder 9
"* Author CPT.Chayutra Pailom THA
"* Date : January 20, 2005

public class RTPpacket{

/ ---
//
// Data Members:
//

/ ---

/** size of the RTP header: */

static int HEADERSIZE = 12;

/** Version fields the RTP header */

public int Version;

/** Padding field */

public int Padding;

/** Extension field */

public int Extension;

/** Contributing source

public int CC;

/** Marker field */

public int Marker;

/** Payload of the RTP packet */

public int PayloadType;

/** Sequence number of the RTP packet */

public int SequenceNumber;

/** Timestamp */

public int TimeStamp;

/** Synchronization source

public int Ssrc;

104

/** Bitstream of the RTP header */

public byte[] header;

/** Size of the RTP payload */

public int payloadsize;

/** Bitstream of the RTP payload */

public byte[] payload;

/ ---//

// Constructor:
//
/ ---

* Set an RTPpacket object from header fields and payload

bitstream

* @param PType the type of the payload
* @param Framenb the sequence number
* @param Time time stamp
* @param data the array of byte of the data
* @param datalength the length of the data

public RTPpacket(int PType, int Framenb, int Time, byte[]
data, int datalength){

// Fill by default header fields:
Version = 2;
Padding = 0;
Extension = 0;
CC = 0;
Marker = 0;
Ssrc = 0;

// Fill changing header fields:
SequenceNumber = Framenb;
TimeStamp = Time;
PayloadType = PType;

// Build the header bistream:
header = new byte[HEADERSIZE];

// RTP header
header[O] = (byte) (header[O] Version << 7);
header[O] = (byte) (header[O] Padding << 5);

105

header[O] = (byte) (header[O] Extension << 4);
header[O] = (byte) (header[O] CC << 3);

header[l] = (byte) (header[l] Marker << 7);
header[l] = (byte) (header[l] PayloadType << 6);

// Sequence number
header[2] = (byte) (SequenceNumber >> 8);
header[3] = (byte) (SequenceNumber & OxFF);

// Timestamp , all 32 bits
header[4] = (byte) (TimeStamp >> 24);
header[5] = (byte) (TimeStamp >> 16);
header[6] = (byte) (TimeStamp >> 8);
header[7] = (byte) (TimeStamp & OxFF);

// Synchronization source, all 32 bits
header[8] = (byte) (Ssrc >> 24);
header[9] = (byte) (Ssrc >> 16);
header[10] = (byte) (Ssrc >> 8);
header[ll] = (byte) (Ssrc & OxFF);

// Fill the payload bitstream:
//-------------------------
payload size = data length;
payload = new byte[datalength];

// Fill payload array of byte from data (given in
parameter of the constructor)

payload = data;

// end constructor

* Set an RTPpacket object from the packet bistream

* @param packet the header of the bitstream
* @param packet-size the total packet size

public RTPpacket(byte[] packet, int packet-size)

// Fill default fields:
Version = 2;
Padding = 0;
Extension = 0;
CC = 0;
Marker = 0;

106

Ssrc = 0;

// Check if total packet size is lower than the header
size

if (packetsize >= HEADERSIZE)

// Get the header bitsream:
header = new byte[HEADER SIZE];
for (int i = 0; i < HEADER SIZE; i++)

header[i] = packet [i] ;

// Get the payload bitstream:
payloadsize = packetsize - HEADERSIZE;
payload = new byte[payloadsize];

for (int i = HEADER SIZE; i < packet size; i++)
payload[i - HEADERSIZE] = packet[i];

// Interpret the changing fields of the header:
PayloadType = header[l] & 127;
SequenceNumber = unsignedint(header[3]) + 256 *

unsignedint (header[2]);
TimeStamp = unsignedint(header[7]) + 256 *

unsignedint(header[6]) + 65536 *
unsignedint(header[5]) + 16777216 *

unsignedint(header[4]);

// end if

// end constructor

* Get payload

* @param data - the data of the payload

* @return the - the payload bistream of the RTPpacket

and its size

public int getpayload(byte[] data)

for (int i = 0; i < payload-size; i++)
data[i] = payload[i];

return(payloadsize);

I // end getpayload()

107

* Get length of the payload

* @return the length of the payload

public int getpayloadlength()

return(payload size);

// end getpayloadlength()

* Get total length of the packet

* @return the length of the packet

public int getlength()

return(payloadsize + HEADERSIZE);

I // end getlength()

* Get the packet size

* @param packet the array of byte of the packet

* @return the total size of the packet

public int getpacket(byte[] packet)

// Construct the packet = header + payload
for (int i = 0; i < HEADER SIZE; i++)

packet[i] = header[i] ;

for (int i = 0; i < payloadsize; i++)
packet[i + HEADERSIZE] = payload[i];

//return total size of the packet
return(payload size + HEADERSIZE);

I // end getpacket()

* Get the timestamp

108

* @return the value of the timestamp

public int gettimestamp()

return TimeStamp;

I // end gettimestamp()

* Get the sequence number

* @return the sequence number

public int getsequencenumber()

return SequenceNumber;

I // end getsequencenumber()

* Getpayloadtype

* @return the payload type

public int getpayloadtype()

return PayloadType;

I // end getpayloadtype()

* Check and return the proper unsigned number

* @param nb - an unsign bit

* @return the unsigned value of 8-bit integer nb

static int unsignedint(int nb)

if (nb >= 0)
return(nb);

else
return (256 + nb);

I // end unsignedinto

// end class RTPpacket

109

"* Title: API Development for Persistent Data Sessions

Support
"* Description: Application server
"* Compiler : JBuilder 9
"* Author CPT.Chayutra Pailom THA
"* Date : January 20, 2005

import java.io*.
import java.net.*;
import java.awt.*;
import java.awt.event*.
import javax.swing.*;

"* This is the server of the project. This server is

expected to coordinate
"* with one client at a time. It will create the thread as

an 'agent' of the
"* server. This class is intended to use socket programming

for both types of
"* protocols and graphic user interface on order to show

the process.

* Expected number of clients which server can handle: 30

*/
*@author OPT Chayutra Pailom THA

public class Server extends JFrame implements
ActionListener {

/ --
//
// Data Members:
//

/ --

//--------- GUI for indicating server process---------

/** JFrame of the server object */

public JFrame g, h;

/** Lebel for showing the server process */

public JLabel label, label2;

110

/** The area to show the process of the server

private JTextArea textArea;

/** The button to shutdown the visibility of the GUI */
private JButton buttonExit;

//----------- Server socket variables--------------

/** Server socket to be used to wait for the client

connection */
private ServerSocket serverSocket;

/** Socket to be used to send the TCP and RTSP request */

private Socket clientSocket;

/** Array of server agent talking to the client */

private ServerThread clientThread[];

/** Number of created socket */

private int socketNumber;

/** Input stream filters */

private BufferedReader br;

/** Output stream filters */

private BufferedWriter bw;

/** Port to communicate with the server

private int port;

/** Buffer used to store the file content to send to the

client */
private char[] buffer;

/** Size of the file in bytes */

private int fileSize;

/** File to be sent to the client */

private String fileName;

/** File input stream to be read */

private FileInputStream fis;

/** Status of the connection with the client */

private boolean connectionLost;

ill

/** Expected number of clients */

private int noOfClients;

/** Sequence of client connected to the server

private int clientNumber;

/ --//

// Constructor:
//
/ --

* Default constructor

* @param name - file name to be retrieved
* @param no - port number of the server to be connected

public Server(String name, int no)

// initialize variables
fileName = name;

port = no;
connectionLost = false;
clientNumber = 0;
noOfClients = 0;

// initialize agents
clientThread = new ServerThread[30]; // can handle for

30 threads
//Socket[] clientSocket = new Socket[30];

// frame specifications
Container container = getContentPane();
this.setTitle("Server Process");
this.setSize(500, 300);
this.setLocation(0, 0);

// buttons and textcomponents
buttonExit = new JButton("Exit");
buttonExit.addActionListener(this);
textArea = new JTextArea(;
textArea.setEditable(false);
JScrollPane scrollPane = new JScrollPane(textArea);

// border layout placements
container.setLayout(new BorderLayout());

112

container.add(scrollPane, "Center");
container.add(buttonExit, "South");

this.setVisible(true); // set visibiity of the main GUI
boolean done = false;

// GUI for TCP or UDP counter
g = new JFrame(" UDP Counter");
h = new JFrame("TCP Counter");

// add window listener
g.addWindowListener(new WindowAdaptero()

public void windowClosing(WindowEvent e)
System.exit (0);

}
}) ;
h.addWindowListener(new WindowAdaptero()

public void windowClosing(WindowEvent e)
System.exit (0);

}
}) ;

// initialize label
label = new JLabel("Send frame #

JLabel. CENTER);
label2 = new JLabel("Send character #

JLabel. CENTER);

// frame attributes both TCP and UDP
g.getContentPane() .add(label, BorderLayout.CENTER);
g.setSize(150, 50);
g.setLocation(280, 50);
h.getContentPane() .add(label2, BorderLayout.CENTER);
h.setSize(300, 100);
h.setLocation(250, 50);

// start the server
try {

serverSocket = new ServerSocket (port);

System.out.println("Binding to port : " + port +
", please wait ... ");

System.out.println("Server started " +
serverSocket);

System.out.println("Server IP " +
serverSocket.getInetAddress ());

113

readFile(fileName); // read the content of the file
into buffer

start(); // go start the server

catch (java.io.IOException ioe)

System.out.println("Cannot bind to port, port may be
using by another application ");

// end try - catch

// end constructor

/ ---//

// Public Methods:
//
/ ---

* Set the logic of the communication status

* @param connectionLost - the status of the

communication

public void setConnectionLost(boolean connectionLost)

this.connectionLost = connectionLost;

I // end setConnectionLost()

* Listener for the exit button

* @param e - Listener for the GUI

public void actionPerformed(ActionEvent e)

if (e.getSource() .equals(buttonExit))
System.exit (0);

I // end actionPerformed()

114

* Add the text to the GUI panel

* @param message - message to be added on the panel

public void addTextArea(String message)

textArea.append(message);
textArea.append("\n");

I // end addTextArea()

/ ---
//
// Private Methods
//

/ ---

* Method to start the server

private void start()

// do the iteration until it reach the maximum number
of threads

while (noOfClients < clientThread.length)

try {

addTextArea("Server is waiting for a client to
establish the connection...\n");

// create the socket to communicate with the client
clientSocket = serverSocket.accept();

addTextArea("Server accepted");
JOptionPane.showMessageDialog(this, "New connection

is established!");

addThread(clientSocket, clientNumber); // create
the thread for communication

addTextArea("Thread #" + (clientNumber + 1) +
created! \n");

if (clientNumber > 0)

115

clientThread[clientNumber -
1] .setConnectionLost(true);

removeThread(clientNumber - 1);

// end if

clientNumber++; // increment the number of socket

I catch (java.io.IOException ioe) {

System.out.println("Client acceptance error ==> " +

ioe.getMessage());

I catch (Exception e) {

System.out.println(e.getMessage());

// end try - catch

// end while

// inform the user when it reaches the maximum number
of clients

if (noOfClients == clientThread.length)

JOptionPane.showMessageDialog(this, "Server can't add
anymore threads!");

// end start()

* Method to read the content of the file

* @param fileName - file to be read into buffer

private void readFile(String fileName)

try {

boolean fileExist = true;
File file = new File(fileName);

try {

fis = new FileInputStream(fileName);

116

I catch (FileNotFoundException e)

fileExist = false;

// end try - catch

if (fileExist) {

System.out.println("File " + fileName + " is
found");

fileSize = (int) file.length(); // get the length
of the file

System.out.println("File Size is " + fileSize +
bytes");

// declare the array of character to be kept for
sending to the client

buffer = new char[fileSize];

// buffer initialization
FileReader fr = new FileReader(file);
br = new BufferedReader(fr);

br.read(buffer, 0, fileSize); // read the file
into buffer

else

System.out.println("file '" + fileName + "' can not
be found");

for (int i = 0; i < fileSize; i++)

buffer[i] = (char) i;

// end for

// end if - else

catch (Exception e2)

System.out.println("Problem in reading file" + e2 +
Vill) ;

// end try - catch

117

I // end readFile()

* Method to add the new connection as a thread

* @param socket - socket for TCP or RTSP communication
* @param clientNumber - the sequence number of connected

client

* @throws Exception

private void addThread(Socket socket, int clientNumber)
throws Exception {

clientThread[clientNumber] = new ServerThread(this,
socket, fileName, (clientNumber + 1));

open(socket); // open the streams

// set important parameters
clientThread[clientNumber] .setParameters(br, bw,

buffer, fileSize);
clientThread[clientNumber] .setConnectionLost(false);

clientThread[clientNumber] .start(; // start the
thread

// end thread

* Method to remove the expired connection

* @param clientNumber - the sequence number of connected

client

private void removeThread(int clientNumber)

ServerThread toTerminate = clientThread[clientNumber];
textArea.append("Removing thread# + (clientNumber +

1) + "\n");

try {

//toTerminate.stop();
toTerminate.close();

I catch (IOException ioe)

118

textArea.append("Error in closing thread\n");

// end try - catch

textArea.append("\nThread# + (clientNumber + 1) +
removed! \n\n");

I // end removeThread()

* Method to open streams filters

* @param clientSocket - socket for the server - client

communication

* @throws IOException

private void open(Socket clientSocket) throws IOException
{

br = new BufferedReader(new
InputStreamReader (clientSocket.getInputStream()));

bw = new BufferedWriter(new
OutputStreamWriter (clientSocket.getOutputStreamo());

I // end open()

/ --
//
// Main Method
//

/ --

public static void main(String arg[])

try {

Server server = new Server(arg[O],
Integer.parseInt (arg[l]));

catch (NumberFormatException nfex)

System. out.println(nfex.getMessage());

I catch (ArrayIndexOutOfBoundsException aiobe)

119

System. out.println("USage: Java Server
<portnumber>\n");

catch (Exception e)

System. out.println(e.getMessage());

// end try - catch

// end main()

// end class Server

120

"* Title: API Development for Persistent Data Sessions

Support
"* Description: Server agent
"* Compiler : JBuilder 9
"* Author CPT.Chayutra Pailom THA
"* Date : January 20, 2005

import java.awt.event.*'
import java.net.*;
import java.io.*;
import javax.swing.*;
import java.util.*;
import javax.swing.*;
import javax.swing. Timer;

"* This class is expected to communicate with only one
client per connection.

"* It acts as an 'agent' of the server. This class is

intended to use socket
"* and important variables passed from the server for both

types of protocols
"* and it uses graphic user interface on order to show the

process.

*/
*@author OPT Ohayutra Pailom THA

public class ServerThread extends Thread implements
Runnable {

/** Socket to be used to send the TCP and RTSP request */

private Socket clientSocket;

/** The main object of the execution */

private Server server;

/** Input stream filters */

private BufferedReader br;

/** Output stream filters */

private BufferedWriter bw;

/** Status of the connection with the client */
private boolean connectionLost;

121

/** The buffer for containing the text file content */

private char[] buffer;

/** Size of the file in bytes */
private int fileSize;

/** File to be sent to the client */

private String fileName;

/** Offset for retriving the data */
private int indexToReadFile;

/** Status of the thread */

public boolean dead;

/** Client number */

private int ID;

//---------------- RTP Variables--------------------

/** Socket to be used to send and receive UDP packets */

private DatagramSocket RTPsocket;

/** UDP packet containing the video frames */
private DatagramPacket senddp;

/** Client IP address */

private InetAddress ClientIPAddr;

/** destination port for RTP packets (given by the RTSP

Client) */
private int RTP destport = 0;

//--------------- VDO Variables--------------------

/** Image nb of the image currently transmitted */

private int imagenb;

/** VideoStream object used to access video frames */

private VideoStream video;

/** RTP payload type for MJPEG video */

private static int MJPEGTYPE = 26;

/** Frame period of the video to stream, in ms

private static int FRAME PERIOD = 100;

122

/** Length of the video in frames */

private static int VIDEOLENGTH = 500;

/** Timer used to send the images at VDO frame rate */

private Timer timer;

/** Buffer used to store the images to send to client */

private byte[] buf;

/** Sequence number of RTSP messages within session */

private int RTSPSeqNb;

/** End of command */

private final static String CRLF ="\r\n";

/** rtsp states */

final static int INIT = 0;
final static int READY = 1;
final static int PLAYING = 2;

/** rtsp message types */

final static int PLAY = 3;
final static int PAUSE = 4;
final static int CLOSE = 5;

/** Logic for iteration control */

private boolean done;

/ ---//

// Constructor:
//
/ ---

* Default constructor

* @param pServer - the server object
* @param pSocket - socket for TCP or RTSP communication
* @param fileName - file to be retrieved
* @param threadID - ID of the thread

* @throws Exception

public ServerThread(Server pServer, Socket pSocket,
String fileName, int threadID) throws Exception

123

// variable assignment
server = pServer;
clientSocket = pSocket;

this.fileName = fileName;
ID = threadID;

// initialize variables
dead = false;
imagenb = 0;
RTSPSeqNb = 0;

// init timer
TimerHandler timerListener = new TimerHandler(;
timer = new Timer(FRAME PERIOD, server);
timer. addActionListener (timerListener);
timer. setInitialDelay (0);
timer.setCoalesce(true);

//allocate memory for the sending buffer
buf = new byte[15000];

// end constructor

* Method to execute the runnable object

public void run()

try {

// loop until the socket get closed
while (!clientSocket.isClosed() {

//clientSocket.setSoTimeout(SOCKETTIMEOUT);
System.out.println(

"In while loop and wait for the command...")

// get the request from the client - one request
per session

String text = new String(br.readLine());
System.out.println(text);

if (text != null) {

handle(text); // server activation

// end if

124

// check for the end of the file
if (((indexToReadFile) == buffer.length) 11

(imagenb >= VIDEOLENGTH))

try {

close(; // close when done, another thread is
waiting for new jobs

I catch (java.io.IOException io) {

System.out.println(io.getMessage());

// end try - catch

break; // quit inner loop

// end if

// end while

catch (SocketTimeoutException stoe)

System.out.println("SocketTimeoutException ==> " +

stoe.getMessage());

catch (SocketException se)

System.out.println("Socket Exception ==> " +

se.getMessage());

try {

close();

I catch (IOException ioe) {}

catch (IOException ioe) {

System.out.println("IOException ==> " +

ioe.getMessage());

catch (java.lang.NullPointerException npe)

System.out.println("NullPointerException ==> " +

npe.getMessage());

125

I catch (Exception e) {

System.out.println("Client acceptance error ==> +

e.getMessage() + e);

I // end try - catch

System.out.println("ConnectionLost status ==> +
connectionLost);

System.out.println("Socket close? ==> +
clientSocket.isClosed());

if (connectionLost == true)

server.setConnectionLost(true);

// end if

dead = true;

I // end run()

* Method to assign parameters

* @param br - Input stream filters
* @param bw - Output stream filters
* @param buffer - array of characters
* @param fileSize - the size of the file in bytes

public void setParameters(BufferedReader br,
BufferedWriter bw, char[] buffer, int fileSize)

this.br = br;
this.bw = bw;
this.buffer = buffer;

this.fileSize = fileSize;

I // end setParameters()

* Method to send the character to the client

* @param connectionLost - the status of the connection

public void setConnectionLost(boolean connectionLost)

126

this.connectionLost = connectionLost;

// end setConnectionLost()

* Method to close the connection

*/
*@throws IQException

public void close() throws IOException

if (clientSocket.isClosed() == false)

clientSocket.close();

// end if

if (br != null)

br.close();

// end if

if (bw != null)

bw.close();

// end if

// end close

* Method to assign parameters

* @param input - the request string from the client

private void handle(String input)

// sending size
if (input.equals("/size"))

String size = Integer.toString(buffer.length);
System.out.println("size + size + Vil);

send(size);

// end if

127

//sending data
else if (input.startsWith("/get "))

System.out.println("Receive command -- >" + input);
StringTokenizer st = new StringTokenizer(input);
String[] commandArray = new String[2];
int counter = 0;

// keep the indormation of the request in the array
while (st.hasMoreTokens())

commandArray[counter] = st.nextToken();
counter++;

// end while

if (commandArray[0] .equalsIgnoreCase("/get"))

// convert to number of the index file to be read -

-> can be started at 0 or at the byte it lost
indexToReadFile =

Integer.parseInt(commandArray[l]);

server.h.setVisible(true);

while (((indexToReadFile) < buffer.length) &&
(connectionLost == false))

try {

// now array(file in bytes) has all bytes -- >

send each byte
sendChar(buffer[indexToReadFile]);
server.label2.setText("Character # " +

indexToReadFile + " , " +
buffer[indexToReadFile] + " is sent");

I catch (Exception e) {

System.out.println("While sending characters,
Exception ==> " + e.getMessage());

// end try - catch

indexToReadFile++; // increment the index
System.out.println(indexToReadFile + ", " +

buffer.length);

128

if (connectionLost == true) {

System.out.println("Next indexToReadFile ==>

+ indexToReadFile);

// break; //exit the while loop

// end if

// end while

if (indexToReadFile == buffer.length)

JOptionPane.showMessageDialog(server, "End of
File. Thread# " + ID + " done!");

server.h.setVisible(false);

// end if

// end if

else if (input.startsWith("/Setup"))

System.out.println("Receive command -- >" + input);
StringTokenizer st = new StringTokenizer(input);
String[] commandArray = new String[3];
int counter = 0;

// keep the indormation of the request in the array
while (st.hasMoreTokens())

commandArray[counter] = st.nextToken(;
System.out.println(commandArray[counter]);
counter++;

// end while

RTSPSeqNb = Integer.parseInt(commandArray[l]);
RTPdestport = Integer.parseInt(commandArray[2]);

// do setup session automatically
// init the VideoStream object:
try {

video = new VideoStream(fileName);

129

I catch (Exception e) {

System.out.println("problem creating video stream"
+ e);

// end try - catch

// init RTP socket
try {

RTPsocket = new DatagramSocket();

I catch (Exception e) {

System. out.println("problem creating Datagram
Socket" + e);

// end try - catch

System.out.println("RTPsocket created!");

// Wait for the SETUP message from the client
int requesttype;
done = false;

ClientIPAddr = clientSocket.getInetAddress (;
System.out.println("ClientIPAddr = " + ClientIPAddr);

server. g. setVisible (true);

while (!done) {

// parse the request
requesttype = parseRTSPrequest(); // blocking

if ((requesttype == PLAY))

if (RTSPSeqNb == 0) {

System.out.println("In else if 'PLAY' before
start the timer");

// start sending the video
timer. start (;

I else

130

// skip to the point it lost the connection
System.out.println("RTSP Sequence number = +

RTSPSeqNb);

// do the iteration, just reading - no sending
for (int i = 0; i < RTSPSeqNb; i++)

try {

imagenb++;
System.out.println("\nIn for loop, discard

frame# " + i);

// get next frame to send from the video,
as well as its size

int imagelength = video.getnextframe(buf);
System.out.println("imagelength = +

imagelength);

// Builds an RTPpacket object containing the
frame

RTPpacket rtppacket = new
RTPpacket(MJPEG TYPE, imagenb, imagenb *

FRAME PERIOD, buf,
imagelength);

// get to total length of the full rtp
packet to send

int packet length = rtp packet.getlength(;
System.out.println("packetlength = +

packetlength);

// retrieve the packet bitstream and store
it in an array of bytes

byte[] packet bits = new
byte[packetlength];

rtppacket .getpacket (packetbits);

catch (Exception e) {

System. out.println(e.getMessageo());

// end try - catch

// end for

131

/** After reading the undesired VDO part, start

to send the rest
* of the video to the client */

timer.start(); // start timer

// end if - else

I else if (requesttype == PAUSE)

System.out.println("In else if 'PAUSE'");
timer.stop(); // stop timer

I else if (requesttype == CLOSE)

System.out.println("In else if 'CLOSE'");
timer.stop();// stop timer

done = true;
//RTPsocket.close();

server.g.setVisible(false);

// end if - else if

try {

// End of File
if (imagenb >= VIDEOLENGTH)

done = true;

RTPsocket.close();

// end if

I catch (Exception e)

System.out.println("problem creating Datagram
Socket" + e);

// end try - catch

// end while

// end else if "/Setup'

// end handle()

132

* Method to send the message to the client

* @param message - the string request

private void send(String message)

try {

bw.write(message);
bw.newLine();
bw.flush();

I catch (IOException ioe)

server.addTextArea("While sending command,
IOException ==> " + ioe.getMessage());

// end try - catch

// end send()

* Method to send the character to the client

* @param ch - the string request

private void sendChar(char ch)

try {

bw.write(ch);
bw.newLine();
bw.flush();

I catch (IOException ioe)

System.out.println(this + "While sending characters,
IOException ==> " + ioe.getMessage());

connectionLost = true;

I catch (Exception e) {

System.out.println(this + "While sending characters,
Exception ==> " + e.getMessage());

connectionLost = true;

// end try - catch

133

// end sendChar()

* Method to parse the request from the client

* @return requesttype

private int parseRTSP request()

int requesttype = -1;

try {

//parse request line and extract the requesttype:
String RequestLine = br.readLine();

System.out.println("RTSP Server - Received from
Client:");

System.out.println("Received command -- > " +

RequestLine);

StringTokenizer tokens = new
StringTokenizer(RequestLine);

String requesttypestring = tokens.nextToken();

if ((new
String(request type string)) .compareTo("PLAY")
- 0) {

request type = PLAY;

System.out.println("Request type -- > " +

requesttype);

I else if ((new
String(requesttypestring)) .compareTo("PAUSE")
== 0) {

requesttype = PAUSE;

System.out.println("Request type -- > " +

requesttype);

I else if ((new
String(requesttypestring)) .compareTo("CLOSE")
== 0) {

requesttype = CLOSE;

System.out.println("Request type -- > " +

requesttype);

134

I // end if - else if

I catch (Exception ex)

System.out.println("Exception caught: + ex);
System.exit (0);

// end try - catch

return (requesttype);

} // end parseRTSPrequest()

* Method to send the response to the client

private void sendRTSPresponse()

try

System. out.println("EOF sent!");
// write the message to the server using buffer

writer
bw.write("EOF");
bw.flush() ;

I catch (Exception ex)

System.out.println("in send Exception caught: " +
ex);

System.exit (0);

// end try - catch

// sendRTSPresponse()

//-------------- I N N E R C L A S S --------------- //

/ --
//
// Action Listener Methods:
//

/--

135

private class TimerHandler extends JFrame implements
ActionListener {

//-----------------------------------
// Handler for timer

//-----------------------------------

public void actionPerformed(ActionEvent e)

System.out.println("\nIn the timer");

// if the current image nb is less than the length of
the video

if (imagenb < VIDEO LENGTH)

imagenb++;// update current imagenb

try {

// get next frame to send from the video, as well
as its size

int imagelength = video.getnextframe(buf);
System.out.println("imagelength = " +

imagelength);

// Builds an RTPpacket object containing the
frame

RTPpacket rtppacket = new RTPpacket(MJPEGTYPE,
imagenb, imagenb * FRAMEPERIOD, buf,
imagelength);

// get to total length of the full RTP packet to
send

int packetlength = rtppacket.getlength(;
System.out.println("packetlength = " +

packetlength);

// retrieve the packet bitstream and store it in
an array of bytes

byte[] packetbits = new byte[packetlength];
rtppacket.getpacket(packetbits);

// send the packet as a DatagramPacket over the
UDP socket

senddp = new DatagramPacket(packet bits,
packet-length, ClientIPAddr, RTP destport);

136

// test the connection by using get command
if (connectionLost == false) {

//Thread.sleep(500); // make it longer
RTPsocket.send(senddp);

// update GUI
server.label.setText("Send frame # " + imagenb

+ "\n") ;
System.out.println("Send frame # " + imagenb);

I else {

System.out.println("\nPhysical connection is
lost for thread# ." + ID);

System.out.println("\nThe timer will be stop
and wait for another request from the
client!\n");

// stop the timer
timer.stop();
server.g.setVisible(false); // disable the

visibility of the GUI

// end if - else

I catch (Exception ex)

System.out.println("Exception in the timer");
System.out.println("Exception caught: " + ex);

System.exit(0);

// end try - catch

else {

// if we have reached the end of the video file,

stop the timer
timer. stop);
System.out.println("The end of the video!");

try {

sendRTSP response();

int reply = parseRTSP request();

137

if (reply == CLOSE)

done = true;
//RTPsocket.close();

server.g.setVisible(false);

// end if

I catch (Exception exp) {}

// end if - else

// end actionPerformed()

// end inner class timerListener

// end class ServerThread

138

"* Title: API Development for Persistent Data Sessions

Support
"* Description: Streaming Video with RTSP and RTP
"* Compiler : JBuilder 9
"* Author CPT.Chayutra Pailom THA
"* Date : January 20, 2005

import java.io.*;

public class VideoStream

/ ---//

// Data Members:
//
/--

/** Video file */

FileInputStream fis;

/** current frame nb */

int frame nb;

/ ---//

// Constructor:
//

/ ---

public VideoStream(String filename) throws Exception{

//init variables
fis = new FileInputStream(filename);
frame nb = 0;

// end constructor

* Get the next frame

* @param frame array of byte of the video

* @return the next frame as an array of byte and the
size of the frame

139

* @throws Exception

public int getnextframe(byte[] frame) throws Exception

int length = 0;
String lengthstring;
byte[] framelength = new byte[5];

// Read current frame length
fis.read(framelength,0,5);

// Transform framelength to integer
length-string = new String(frame length);
length = Integer.parseInt(lengthstring);

return(fis.read(frame, 0,length));

I // end getnextframe()

// end class VideoStream

140

APPENDIX B. CLASS DIAGRAMS

In this section, the class diagrams from Chapter IV

are shown in order as following:

"* class diagram of the application client

"* Class diagram of the persistency API

"* Class diagram of the RTP packet

"* Class diagram of the application server

"* Class diagram of the application proxy server

"* Class diagram of the streaming video for RTP and RTSP

141

b.c ,e ,ene-t
4 ttororc: -to

4 -ur~l -Jf--l - - - - - -

eufereneaer uffredritr 4b=ourZre
'P .. d d e p..."4 ' butoepMr"

eccicenb 4 -t,0eeI ei
4 c -e -Bi ------ ------- ------

,

ieet4 Ci-1-9-ir Celere c -i- - - - - - - - -- - - - - - -

4 RLF -,g

D-91.~ f--.

flterpekt lteeeeet Sektov~ett ~Ipe~tceeeer ~ L3~I~3' L!EneElL~E Ai

4iire -L1J-

Imgle Jtte ~rm lbe tee O~nia Oeulm Wac fegeec seelce JTeAIItue Timer 4 JPEG-TYPE Ai lecc

4 ITP RCrIPORT i -..

4 T 1-lerD I1---Ai II.ŽEE

Figure ~ ~ ~ ~ ~~~~' 40 Cls;iarmofteaplctoncin
142'3"p

Object

red

red ConnectionControl
Client Cinttme~stnr

Client • br : BufferedReader

S• ~bw : BufferedViter
4client: Client

done: booleon
4 host: String

BufferedReader Buffred;ýriter port: 4 nt

4 socket : Socket

srn ConnectionCootrolO: void 14 initializotionO : void - - - - iii
jaua,.nt4 reconnectProcesooo voidv

Sopeno: void IOException 'nputStreamReader I[•in.J OutputJreriW•r It I pJ

Soe t sendTCPRequest0: void

t°endUDPRequeeto: void B

index: int -- -

- - --- Uow n~otxception]

jaivai.swing

IJOptianPane I•ii~

Figure 41. Class diagram of the persistency API

143

jaua.Iang[

rcdi

RTPpacket rcdý

F Client.timerListener ServerThread ServerThread.TimerHandler
SCC: it
SExtension : irt

40 header: byte[]- - - - - - - - - - - - - - - - -

40 Marker: int

Padding: int

payload: byte[]

payloadsize: int

4 PayloadType: it

40 SequenceNumber: int

SSsrc: int

STimeStamp: int

Version : int

HEADER SIZE: int

4getlength0 : int

4getpacket0 : int

4getpayload : int

4 getpayload length : int

4 getpayloadtype0 : int

4getsequencenumbero : int

4gettimestampQ : int

4printheaderO : void

SRTPpacketO: void

O RTPpacket0: void

-b unsigned int : int

Figure 42. Class diagram of the RTP packet

144

bred

Server.hread - -.. ...eetheead.tione.l.a.dler

a cabol: Lobel

4br Er] Juttod - odeiaou o o-a-

4 ci entNk ber :: int
SclientSocket: Socket

SclientThread: ServerThread[] - --- - --fl - I
nn

n
flWNaep: SnvringfileSize : irr[IVA.. .. .• " =' o h m

Sfis Filelnrp,,[St[rear

S c noOfClierso: eit

Soke:reroke ---- ------- --------------------

SleAtArea : JTeAtArea --------- - ------ -----

:to eeoC: o .Id
r..

m•••ationero r d : void Em] I~v Ii s Ico O E o

SernO:ver"[File IIFileotliFuundExcep=tiollI in~ edrI OxetolI .. •...roe I •t-•.. IO•.•=.•e

readdThrad0 voidSo p e nK) : V o id- - - - - - - - - - - - - - - - - - -S..reo d i() : cold-- ---- - - ----------- E--------
- -t-rt : -o- --- -

-- 14.de

Figure 43. Class diagram of the application server

145

Q ServeThre..d

Sdead Ebolean

Server Video tream t CLOSE oe
Iý NIT : it

4# PAUSE of -

Bufferedieader Bueredriter4 br : Bufferedl - -- - -- -

4 buf: byte[]

4 buffer: har[]

bo :Bfferedfgritor jaialargn]
ClientlPAddr InetAddress

4cliertSocket Socket

CRLF: String r-------- - I
d . .boen:-- - - - - - - - - -I

4o fieNamre: String V ~
tfieSize: ii hLJ I . I l erEcepfionI I t

ataraPacket Datagraoket InetAdtreso Socoket] 4 FRAME PERIOD: ijot

ao4imagenb : int

indeoToReadFile: idt
MJPEG TYPE : int

RTPdestJport: int soeketeption II SocketTimeoutExceplioe]

RTPsocket: DatagracSocket

RTSPSeqhb int

senddp: DatagramPacket o i-
server : Server

4 irrer: Tiier

video: VideoStreorr

VIDEO LENGTH: in - - - - - -

4 clooeo: void L le ptio
4runo(: void

SServerThread0 void red
4 setParameterso : void

hbaodeO :vood
parse RTSP request(): irr

-edo.: void

tend_RTSPresponse(O: void

ScendCha,0 : void

SconnectionLost : boolean

Figure 44. Class diagram of the application proxy server

146

jaua.Iang

Object

re]VideoStreamn red
I Serverl-hread: fis" Filelnputrea ---- seruerThread.TirmerHandler

p framenb: int jauatlangr

FilelnputStream 4- g getnextframe(: irt--------

• VideoStreamO: void

Figure 45. Class diagram of the streaming video for RTP and RTSP

147

THIS PAGE INTENTIONALLY LEFT BLANK

148

LIST OF REFERENCES

[1] Wikipedia, "Session" The free encyclopedia. Internet
Available http://en.wikipedia.org/wiki/Main Page
(2 February 2005).

[2] Java, "Networking Features". Internet Available
http://java.sun.com/j2se/1.5.0/docs/guide/net/ (5 February
2005).

[3] Disco Lab, "Laboratory for Network Centric Computing".
Internet Available http://discolab.rutgers.edu/index.html
(20 December 2004)

[4] Pantoleon, Perliklis K. "Reliable Content Delivery
using Persistent Data Sessions in Highly Mobile
Environment", Master Thesis, March 2004.

[5] Stevens, R. "UNIX Network Programming", Englewood
Cliffs: Prentice-HalL Inc., 1990.

[6] Developer Works, "Developing an On Demand Workplace,
Part 7: Really going mobile" IBM, Internet Available
http://www-106.ibm.com/developerworks/library/i-workplace7/
(15 February 2005).

Kurose, James F. and Ross, Keith W. Computer networking, A
Top-Down Approach Featuring the Internet Second Edition,
Amsherst: University of Massachusetts and Eurecom
Institute.

149

THIS PAGE INTENTIONALLY LEFT BLANK

150

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center

Ft. Belvoir, Virginia

2. Dudley Knox Library

Naval Postgraduate School

Monterey, California

3. Peter J. Denning, Chairman, Ph.D, Code CS

Department of Computer Science

Naval Postgraduate School

Monterey, California

4. Su Wen, Assistant Professor, Ph.D, Code CS

Department of Computer Science

Naval Postgraduate School

Monterey, California

5. Arijit Das, Research Associate, Code CS

Department of Computer Science

Naval Postgraduate School

Monterey, California

6. Captain Chayutra Pailom

Royal Thai Supreme Command Headquarter

Bangkok, Thailand

151

